Step
*
of Lemma
free-vs-dim-1
∀S:Type. (S
⇒ (∀K:CRng. free-vs(K;S) ≅ one-dim-vs(K) supposing ∀x,y:S. (x = y ∈ S)))
BY
{ (Auto
THEN (InstLemma `free-vs-unique` [⌜S⌝;⌜K⌝;⌜one-dim-vs(K)⌝]⋅ THENA Auto)
THEN D -1
THEN Thin (-1)
THEN (D -1 THENM EAuto 1)
THEN (Subst' Point(one-dim-vs(K)) ~ |K| 0 THENA Computation)
THEN D 0 With ⌜λx.1⌝
THEN Auto
THEN Reduce 0
THEN RenameVar `s' 2) }
1
1. S : Type
2. s : S
3. K : CRng
4. ∀x,y:S. (x = y ∈ S)
5. vs : VectorSpace(K)
6. f : S ⟶ Point(vs)
⊢ ∃!h:one-dim-vs(K) ⟶ vs. ∀s:S. ((h 1) = (f s) ∈ Point(vs))
Latex:
Latex:
\mforall{}S:Type. (S {}\mRightarrow{} (\mforall{}K:CRng. free-vs(K;S) \mcong{} one-dim-vs(K) supposing \mforall{}x,y:S. (x = y)))
By
Latex:
(Auto
THEN (InstLemma `free-vs-unique` [\mkleeneopen{}S\mkleeneclose{};\mkleeneopen{}K\mkleeneclose{};\mkleeneopen{}one-dim-vs(K)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN Thin (-1)
THEN (D -1 THENM EAuto 1)
THEN (Subst' Point(one-dim-vs(K)) \msim{} |K| 0 THENA Computation)
THEN D 0 With \mkleeneopen{}\mlambda{}x.1\mkleeneclose{}
THEN Auto
THEN Reduce 0
THEN RenameVar `s' 2)
Home
Index