Nuprl Lemma : free-vs-dim-1
∀S:Type. (S ⇒ (∀K:CRng. free-vs(K;S) ≅ one-dim-vs(K) supposing ∀x,y:S.  (x = y ∈ S)))
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S), 
vs-iso: A ≅ B, 
one-dim-vs: one-dim-vs(K), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
crng: CRng, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
vs-point: Point(vs), 
record-select: r.x, 
one-dim-vs: one-dim-vs(K), 
mk-vs: mk-vs, 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
rng_car: |r|, 
pi1: fst(t), 
exists: ∃x:A. B[x], 
rng: Rng, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
vs-map: A ⟶ B, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
exists!: ∃!x:T. P[x], 
cand: A c∧ B, 
squash: ↓T, 
true: True, 
guard: {T}, 
rev_implies: P ⇐ Q
Lemmas referenced : 
free-vs-unique, 
one-dim-vs_wf, 
rng_one_wf, 
vs-point_wf, 
vector-space_wf, 
exists!_wf, 
vs-map_wf, 
equal_wf, 
subtype_rel_self, 
vs-iso_inversion, 
free-vs_wf, 
crng_wf, 
istype-universe, 
unique-one-dim-vs-map, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
extract_by_obid, 
isectElimination, 
setElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
functionIsType, 
because_Cache, 
universeIsType, 
functionEquality, 
applyEquality, 
equalityIstype, 
instantiate, 
universeEquality, 
independent_pairFormation, 
promote_hyp, 
productIsType, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}S:Type.  (S  {}\mRightarrow{}  (\mforall{}K:CRng.  free-vs(K;S)  \mcong{}  one-dim-vs(K)  supposing  \mforall{}x,y:S.    (x  =  y)))
Date html generated:
2019_10_31-AM-06_30_39
Last ObjectModification:
2019_08_02-PM-04_04_40
Theory : linear!algebra
Home
Index