Nuprl Lemma : free-vs-dim-1

S:Type. (S  (∀K:CRng. free-vs(K;S) ≅ one-dim-vs(K) supposing ∀x,y:S.  (x y ∈ S)))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-iso: A ≅ B one-dim-vs: one-dim-vs(K) uimplies: supposing a all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] crng: CRng iff: ⇐⇒ Q and: P ∧ Q vs-point: Point(vs) record-select: r.x one-dim-vs: one-dim-vs(K) mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt rng_car: |r| pi1: fst(t) exists: x:A. B[x] rng: Rng so_lambda: λ2x.t[x] prop: vs-map: A ⟶ B subtype_rel: A ⊆B so_apply: x[s] exists!: !x:T. P[x] cand: c∧ B squash: T true: True guard: {T} rev_implies:  Q
Lemmas referenced :  free-vs-unique one-dim-vs_wf rng_one_wf vs-point_wf vector-space_wf exists!_wf vs-map_wf equal_wf subtype_rel_self vs-iso_inversion free-vs_wf crng_wf istype-universe unique-one-dim-vs-map squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType rename extract_by_obid isectElimination setElimination productElimination independent_functionElimination dependent_pairFormation_alt functionIsType because_Cache universeIsType functionEquality applyEquality equalityIstype instantiate universeEquality independent_pairFormation promote_hyp productIsType imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}S:Type.  (S  {}\mRightarrow{}  (\mforall{}K:CRng.  free-vs(K;S)  \mcong{}  one-dim-vs(K)  supposing  \mforall{}x,y:S.    (x  =  y)))



Date html generated: 2019_10_31-AM-06_30_39
Last ObjectModification: 2019_08_02-PM-04_04_40

Theory : linear!algebra


Home Index