Nuprl Lemma : free-vs_wf

[S:Type]. ∀[K:CRng].  (free-vs(K;S) ∈ VectorSpace(K))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vector-space: VectorSpace(K) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  implies:  Q rev_implies:  Q iff: ⇐⇒ Q true: True prop: squash: T top: Top cand: c∧ B and: P ∧ Q guard: {T} subtype_rel: A ⊆B free-vs: free-vs(K;S) all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] formal-sum: formal-sum(K;S) basic-formal-sum: basic-formal-sum(K;S) rng: Rng crng: CRng member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf formal-sum-mul-add rng_times_wf infix_ap_wf formal-sum-mul-mul formal-sum-mul-0 formal-sum-mul-1 formal-sum-mul-linear iff_weakening_equal formal-sum-add-comm true_wf squash_wf equal_wf formal-sum-add-assoc formal-sum-mul_wf formal-sum-add_wf rng_car_wf subtype_rel_transitivity bag_wf empty-bag_wf mk-vs_wf bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf subtype_quotient formal-sum_wf
Rules used in proof :  axiomEquality independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality imageElimination independent_pairFormation voidEquality voidElimination lambdaFormation productEquality instantiate isectEquality equalitySymmetry equalityTransitivity applyEquality universeEquality isect_memberEquality dependent_functionElimination independent_isectElimination lambdaEquality because_Cache sqequalRule cumulativity hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].    (free-vs(K;S)  \mmember{}  VectorSpace(K))



Date html generated: 2018_05_22-PM-09_46_08
Last ObjectModification: 2018_01_09-PM-00_25_15

Theory : linear!algebra


Home Index