Nuprl Lemma : mk-vs_wf
∀[K:RngSig]. ∀[V:Type]. ∀[z:V]. ∀[+:V ⟶ V ⟶ V]. ∀[*:|K| ⟶ V ⟶ V].
  Point= V
  zero= z
  x+y= +[x;y]
  a*u= *[a;u] ∈ VectorSpace(K) 
  supposing (∀x,y,z:V.  (+[x;+[y;z]] = +[+[x;y];z] ∈ V))
  ∧ (∀x,y:V.  (+[x;y] = +[y;x] ∈ V))
  ∧ (∀a:|K|. ∀x,y:V.  (*[a;+[x;y]] = +[*[a;x];*[a;y]] ∈ V))
  ∧ (∀x:V. (*[1;x] = x ∈ V))
  ∧ (∀x:V. (*[0;x] = z ∈ V))
  ∧ (∀x:V. ∀a,b:|K|.  (*[a;*[b;x]] = *[a * b;x] ∈ V))
  ∧ (∀x:V. ∀a,b:|K|.  (*[a +K b;x] = +[*[a;x];*[b;x]] ∈ V))
Proof
Definitions occuring in Statement : 
mk-vs: mk-vs, 
vector-space: VectorSpace(K)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_one: 1
, 
rng_times: *
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
infix_ap: x f y
, 
true: True
, 
squash: ↓T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
so_apply: x[s1;s2]
, 
vs-point: Point(vs)
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
bfalse: ff
, 
eq_atom: x =a y
, 
top: Top
, 
record-select: r.x
, 
guard: {T}
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
record: record(x.T[x])
, 
record-update: r[x := v]
, 
record+: record+, 
vector-space: VectorSpace(K)
, 
mk-vs: mk-vs, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_one_wf, 
rng_times_wf, 
infix_ap_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
rng_car_wf, 
all_wf, 
equal_wf, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
iff_transitivity, 
rec_select_update_lemma, 
subtype_base_sq, 
assert_of_eq_atom, 
eqtt_to_assert, 
atom_subtype_base, 
assert_wf, 
bool_wf, 
equal-wf-base, 
uiff_transitivity, 
eq_atom_wf
Rules used in proof : 
functionEquality, 
axiomEquality, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
imageElimination, 
productEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
impliesFunctionality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
cumulativity, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
atomEquality, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
hypothesis, 
tokenEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
functionExtensionality, 
because_Cache, 
dependentIntersection_memberEquality, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[V:Type].  \mforall{}[z:V].  \mforall{}[+:V  {}\mrightarrow{}  V  {}\mrightarrow{}  V].  \mforall{}[*:|K|  {}\mrightarrow{}  V  {}\mrightarrow{}  V].
    Point=  V
    zero=  z
    x+y=  +[x;y]
    a*u=  *[a;u]  \mmember{}  VectorSpace(K) 
    supposing  (\mforall{}x,y,z:V.    (+[x;+[y;z]]  =  +[+[x;y];z]))
    \mwedge{}  (\mforall{}x,y:V.    (+[x;y]  =  +[y;x]))
    \mwedge{}  (\mforall{}a:|K|.  \mforall{}x,y:V.    (*[a;+[x;y]]  =  +[*[a;x];*[a;y]]))
    \mwedge{}  (\mforall{}x:V.  (*[1;x]  =  x))
    \mwedge{}  (\mforall{}x:V.  (*[0;x]  =  z))
    \mwedge{}  (\mforall{}x:V.  \mforall{}a,b:|K|.    (*[a;*[b;x]]  =  *[a  *  b;x]))
    \mwedge{}  (\mforall{}x:V.  \mforall{}a,b:|K|.    (*[a  +K  b;x]  =  +[*[a;x];*[b;x]]))
Date html generated:
2018_05_22-PM-09_41_46
Last ObjectModification:
2018_01_09-PM-01_03_32
Theory : linear!algebra
Home
Index