Nuprl Lemma : formal-sum-add-assoc
∀[x,y,z:Top].  (x + y + z ~ x + y + z)
Proof
Definitions occuring in Statement : 
formal-sum-add: x + y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
formal-sum-add: x + y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
bag-append-assoc2, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y,z:Top].    (x  +  y  +  z  \msim{}  x  +  y  +  z)
Date html generated:
2018_05_22-PM-09_45_34
Last ObjectModification:
2017_11_17-PM-03_38_33
Theory : linear!algebra
Home
Index