Nuprl Lemma : formal-sum-mul-0

[S:Type]. ∀[K:Rng]. ∀[x:formal-sum(K;S)].  (0 {} ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] universe: Type equal: t ∈ T rng: Rng rng_zero: 0 empty-bag: {}
Definitions unfolded in proof :  prop: basic-formal-sum: basic-formal-sum(K;S) uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] implies:  Q all: x:A. B[x] rng: Rng and: P ∧ Q quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S) member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] infix_ap: y subtype_rel: A ⊆B so_lambda: λ2x.t[x] top: Top or: P ∨ Q bfs-reduce: bfs-reduce(K;S;as;bs) exists: x:A. B[x] true: True pi2: snd(t) compose: g squash: T formal-sum-mul: x zero-bfs: ss
Lemmas referenced :  rng_wf formal-sum_wf equal-wf-base equal_wf implies-bfs-equiv rng_car_wf empty-bag_wf rng_zero_wf formal-sum-mul_wf1 bfs-equiv-rel bfs-equiv_wf quotient-member-eq basic-formal-sum_wf equal-wf-base-T bag_wf rng_plus_wf infix_ap_wf bag-append_wf exists_wf empty_bag_append_lemma zero-bfs_wf pi2_wf bag-map_wf rng_times_zero true_wf squash_wf bag-map-map
Rules used in proof :  universeEquality axiomEquality isect_memberEquality independent_functionElimination productEquality dependent_functionElimination independent_isectElimination lambdaEquality lambdaFormation hypothesisEquality cumulativity rename setElimination isectElimination extract_by_obid equalitySymmetry hypothesis equalityTransitivity thin productElimination pertypeElimination sqequalRule because_Cache pointwiseFunctionalityForEquality sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed applyEquality voidEquality voidElimination inlFormation independent_pairEquality dependent_pairFormation imageMemberEquality natural_numberEquality functionExtensionality functionEquality imageElimination

Latex:
\mforall{}[S:Type].  \mforall{}[K:Rng].  \mforall{}[x:formal-sum(K;S)].    (0  *  x  =  \{\})



Date html generated: 2018_05_22-PM-09_45_46
Last ObjectModification: 2018_01_09-PM-01_12_42

Theory : linear!algebra


Home Index