Nuprl Lemma : formal-sum-mul-0
∀[S:Type]. ∀[K:Rng]. ∀[x:formal-sum(K;S)].  (0 * x = {} ∈ formal-sum(K;S))
Proof
Definitions occuring in Statement : 
formal-sum: formal-sum(K;S)
, 
formal-sum-mul: k * x
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_zero: 0
, 
empty-bag: {}
Definitions unfolded in proof : 
prop: ℙ
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rng: Rng
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
, 
formal-sum: formal-sum(K;S)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
or: P ∨ Q
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
exists: ∃x:A. B[x]
, 
true: True
, 
pi2: snd(t)
, 
compose: f o g
, 
squash: ↓T
, 
formal-sum-mul: k * x
, 
zero-bfs: 0 * ss
Lemmas referenced : 
rng_wf, 
formal-sum_wf, 
equal-wf-base, 
equal_wf, 
implies-bfs-equiv, 
rng_car_wf, 
empty-bag_wf, 
rng_zero_wf, 
formal-sum-mul_wf1, 
bfs-equiv-rel, 
bfs-equiv_wf, 
quotient-member-eq, 
basic-formal-sum_wf, 
equal-wf-base-T, 
bag_wf, 
rng_plus_wf, 
infix_ap_wf, 
bag-append_wf, 
exists_wf, 
empty_bag_append_lemma, 
zero-bfs_wf, 
pi2_wf, 
bag-map_wf, 
rng_times_zero, 
true_wf, 
squash_wf, 
bag-map-map
Rules used in proof : 
universeEquality, 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productEquality, 
dependent_functionElimination, 
independent_isectElimination, 
lambdaEquality, 
lambdaFormation, 
hypothesisEquality, 
cumulativity, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
thin, 
productElimination, 
pertypeElimination, 
sqequalRule, 
because_Cache, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
applyEquality, 
voidEquality, 
voidElimination, 
inlFormation, 
independent_pairEquality, 
dependent_pairFormation, 
imageMemberEquality, 
natural_numberEquality, 
functionExtensionality, 
functionEquality, 
imageElimination
Latex:
\mforall{}[S:Type].  \mforall{}[K:Rng].  \mforall{}[x:formal-sum(K;S)].    (0  *  x  =  \{\})
Date html generated:
2018_05_22-PM-09_45_46
Last ObjectModification:
2018_01_09-PM-01_12_42
Theory : linear!algebra
Home
Index