Nuprl Lemma : implies-bfs-equiv
∀[K:RngSig]. ∀[S:Type].  ∀as,bs:basic-formal-sum(K;S).  (bfs-reduce(K;S;as;bs) ⇒ bfs-equiv(K;S;as;bs))
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2), 
bfs-reduce: bfs-reduce(K;S;as;bs), 
basic-formal-sum: basic-formal-sum(K;S), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
rng_sig: RngSig
Definitions unfolded in proof : 
guard: {T}, 
prop: ℙ, 
bfs-equiv: bfs-equiv(K;S;fs1;fs2), 
infix_ap: x f y, 
rel_implies: R1 => R2, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
basic-formal-sum_wf, 
bfs-reduce_wf, 
implies-least-equiv
Rules used in proof : 
universeEquality, 
sqequalRule, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].
    \mforall{}as,bs:basic-formal-sum(K;S).    (bfs-reduce(K;S;as;bs)  {}\mRightarrow{}  bfs-equiv(K;S;as;bs))
Date html generated:
2018_05_22-PM-09_45_12
Last ObjectModification:
2018_01_09-AM-11_07_09
Theory : linear!algebra
Home
Index