Nuprl Lemma : implies-bfs-equiv

[K:RngSig]. ∀[S:Type].  ∀as,bs:basic-formal-sum(K;S).  (bfs-reduce(K;S;as;bs)  bfs-equiv(K;S;as;bs))


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type rng_sig: RngSig
Definitions unfolded in proof :  guard: {T} prop: bfs-equiv: bfs-equiv(K;S;fs1;fs2) infix_ap: y rel_implies: R1 => R2 member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf basic-formal-sum_wf bfs-reduce_wf implies-least-equiv
Rules used in proof :  universeEquality sqequalRule hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].
    \mforall{}as,bs:basic-formal-sum(K;S).    (bfs-reduce(K;S;as;bs)  {}\mRightarrow{}  bfs-equiv(K;S;as;bs))



Date html generated: 2018_05_22-PM-09_45_12
Last ObjectModification: 2018_01_09-AM-11_07_09

Theory : linear!algebra


Home Index