Step
*
of Lemma
implies-bfs-equiv
∀[K:RngSig]. ∀[S:Type]. ∀as,bs:basic-formal-sum(K;S). (bfs-reduce(K;S;as;bs)
⇒ bfs-equiv(K;S;as;bs))
BY
{ (Auto
THEN (InstLemma `implies-least-equiv` [⌜basic-formal-sum(K;S)⌝;⌜λas,bs. bfs-reduce(K;S;as;bs)⌝]⋅ THENA Auto)
THEN RepUR ``rel_implies infix_ap`` -1
THEN Fold `bfs-equiv` (-1)
THEN Auto) }
Latex:
Latex:
\mforall{}[K:RngSig]. \mforall{}[S:Type].
\mforall{}as,bs:basic-formal-sum(K;S). (bfs-reduce(K;S;as;bs) {}\mRightarrow{} bfs-equiv(K;S;as;bs))
By
Latex:
(Auto
THEN (InstLemma `implies-least-equiv` [\mkleeneopen{}basic-formal-sum(K;S)\mkleeneclose{};\mkleeneopen{}\mlambda{}as,bs. bfs-reduce(K;S;as;bs)\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN RepUR ``rel\_implies infix\_ap`` -1
THEN Fold `bfs-equiv` (-1)
THEN Auto)
Home
Index