Nuprl Lemma : formal-sum-mul_wf1

[S:Type]. ∀[K:RngSig]. ∀[x:basic-formal-sum(K;S)]. ∀[k:|K|].  (k x ∈ basic-formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum-mul: x basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  infix_ap: y member: t ∈ T uall: [x:A]. B[x] basic-formal-sum: basic-formal-sum(K;S) formal-sum-mul: x
Lemmas referenced :  rng_sig_wf bag_wf rng_times_wf rng_car_wf bag-map_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality applyEquality independent_pairEquality productElimination spreadEquality lambdaEquality cumulativity hypothesis hypothesisEquality productEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[x:basic-formal-sum(K;S)].  \mforall{}[k:|K|].    (k  *  x  \mmember{}  basic-formal-sum(K;S))



Date html generated: 2018_05_22-PM-09_44_29
Last ObjectModification: 2018_01_09-PM-01_00_44

Theory : linear!algebra


Home Index