Step
*
of Lemma
formal-sum-mul-0
∀[S:Type]. ∀[K:Rng]. ∀[x:formal-sum(K;S)]. (0 * x = {} ∈ formal-sum(K;S))
BY
{ (Auto
THEN D -1
THEN (GenConcl ⌜x = a ∈ basic-formal-sum(K;S)⌝⋅ THENA Auto)
THEN All Thin
THEN EqTypeCD
THEN Auto
THEN All (Unfold `basic-formal-sum`)
THEN Auto
THEN (Assert {} ∈ basic-formal-sum(K;S) BY
(Unfold `basic-formal-sum` 0 THEN Auto))
THEN (BLemma `implies-bfs-equiv` THENA Auto)) }
1
1. S : Type
2. K : Rng
3. a : bag(|K| × S)
4. {} ∈ basic-formal-sum(K;S)
⊢ bfs-reduce(K;S;0 * a;{})
Latex:
Latex:
\mforall{}[S:Type]. \mforall{}[K:Rng]. \mforall{}[x:formal-sum(K;S)]. (0 * x = \{\})
By
Latex:
(Auto
THEN D -1
THEN (GenConcl \mkleeneopen{}x = a\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin
THEN EqTypeCD
THEN Auto
THEN All (Unfold `basic-formal-sum`)
THEN Auto
THEN (Assert \{\} \mmember{} basic-formal-sum(K;S) BY
(Unfold `basic-formal-sum` 0 THEN Auto))
THEN (BLemma `implies-bfs-equiv` THENA Auto))
Home
Index