Nuprl Lemma : formal-sum_wf

[K:RngSig]. ∀[S:Type].  (formal-sum(K;S) ∈ Type)


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] formal-sum: formal-sum(K;S) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf quotient_wf
Rules used in proof :  isect_memberEquality universeEquality equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination independent_isectElimination because_Cache lambdaEquality hypothesis cumulativity hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].    (formal-sum(K;S)  \mmember{}  Type)



Date html generated: 2018_05_22-PM-09_45_16
Last ObjectModification: 2018_01_09-AM-11_07_40

Theory : linear!algebra


Home Index