Nuprl Lemma : formal-sum_wf
∀[K:RngSig]. ∀[S:Type].  (formal-sum(K;S) ∈ Type)
Proof
Definitions occuring in Statement : 
formal-sum: formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
formal-sum: formal-sum(K;S)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
bfs-equiv-rel, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
quotient_wf
Rules used in proof : 
isect_memberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
independent_isectElimination, 
because_Cache, 
lambdaEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].    (formal-sum(K;S)  \mmember{}  Type)
Date html generated:
2018_05_22-PM-09_45_16
Last ObjectModification:
2018_01_09-AM-11_07_40
Theory : linear!algebra
Home
Index