Nuprl Lemma : formal-sum-add-comm

[S:Type]. ∀[K:RngSig]. ∀[x,y:formal-sum(K;S)].  (x x ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum-add: y formal-sum: formal-sum(K;S) uall: [x:A]. B[x] universe: Type equal: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T member: t ∈ T basic-formal-sum: basic-formal-sum(K;S) formal-sum-add: y uall: [x:A]. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S) all: x:A. B[x] trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  rng_sig_wf formal-sum_wf iff_weakening_equal bag-append_wf bag-append-comm rng_car_wf bag_wf true_wf squash_wf equal_wf equal-wf-base formal-sum-add_wf1 bfs-equiv_wf basic-formal-sum_wf quotient-member-eq bfs-equiv-rel formal-sum-add_functionality and_wf
Rules used in proof :  axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination universeEquality baseClosed imageMemberEquality natural_numberEquality cumulativity productEquality because_Cache equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality introduction sqequalRule cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution pertypeElimination pointwiseFunctionalityForEquality dependent_functionElimination hyp_replacement dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[x,y:formal-sum(K;S)].    (x  +  y  =  y  +  x)



Date html generated: 2018_05_22-PM-09_45_31
Last ObjectModification: 2018_01_09-PM-01_00_15

Theory : linear!algebra


Home Index