Nuprl Lemma : formal-sum-add-comm
∀[S:Type]. ∀[K:RngSig]. ∀[x,y:formal-sum(K;S)].  (x + y = y + x ∈ formal-sum(K;S))
Proof
Definitions occuring in Statement : 
formal-sum-add: x + y
, 
formal-sum: formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
member: t ∈ T
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
formal-sum-add: x + y
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
quotient: x,y:A//B[x; y]
, 
formal-sum: formal-sum(K;S)
, 
all: ∀x:A. B[x]
, 
trans: Trans(T;x,y.E[x; y])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
rng_sig_wf, 
formal-sum_wf, 
iff_weakening_equal, 
bag-append_wf, 
bag-append-comm, 
rng_car_wf, 
bag_wf, 
true_wf, 
squash_wf, 
equal_wf, 
equal-wf-base, 
formal-sum-add_wf1, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
quotient-member-eq, 
bfs-equiv-rel, 
formal-sum-add_functionality, 
and_wf
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
cumulativity, 
productEquality, 
because_Cache, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
introduction, 
sqequalRule, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
pertypeElimination, 
pointwiseFunctionalityForEquality, 
dependent_functionElimination, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[x,y:formal-sum(K;S)].    (x  +  y  =  y  +  x)
Date html generated:
2018_05_22-PM-09_45_31
Last ObjectModification:
2018_01_09-PM-01_00_15
Theory : linear!algebra
Home
Index