Nuprl Lemma : formal-sum-add_functionality

S:Type. ∀K:RngSig. ∀x,x',y,y':basic-formal-sum(K;S).
  (bfs-equiv(K;S;y;y')  bfs-equiv(K;S;x;x')  bfs-equiv(K;S;x y;x' y'))


Proof




Definitions occuring in Statement :  formal-sum-add: y bfs-equiv: bfs-equiv(K;S;fs1;fs2) basic-formal-sum: basic-formal-sum(K;S) all: x:A. B[x] implies:  Q universe: Type rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] prop: bfs-reduce: bfs-reduce(K;S;as;bs) or: P ∨ Q so_lambda: λ2x.t[x] and: P ∧ Q basic-formal-sum: basic-formal-sum(K;S) infix_ap: y subtype_rel: A ⊆B so_apply: x[s] guard: {T} exists: x:A. B[x] formal-sum-add: y top: Top squash: T true: True uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  rng_sig_wf bfs-equiv-implies bfs-equiv_wf formal-sum-add_wf1 basic-formal-sum_wf bfs-reduce_wf implies-bfs-equiv exists_wf rng_car_wf equal_wf bag-append_wf formal-sum-mul_wf1 rng_plus_wf subtype_rel_self bag_wf zero-bfs_wf bag-append-assoc2 squash_wf true_wf bag-append-comm bag-append-ac iff_weakening_equal bfs-equiv-rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis universeEquality sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality independent_functionElimination because_Cache dependent_functionElimination unionElimination inlFormation productEquality applyEquality inrFormation productElimination dependent_pairFormation hyp_replacement equalitySymmetry applyLambdaEquality isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination independent_pairFormation

Latex:
\mforall{}S:Type.  \mforall{}K:RngSig.  \mforall{}x,x',y,y':basic-formal-sum(K;S).
    (bfs-equiv(K;S;y;y')  {}\mRightarrow{}  bfs-equiv(K;S;x;x')  {}\mRightarrow{}  bfs-equiv(K;S;x  +  y;x'  +  y'))



Date html generated: 2018_05_22-PM-09_45_25
Last ObjectModification: 2018_05_20-PM-10_42_49

Theory : linear!algebra


Home Index