Nuprl Lemma : bfs-equiv-implies

[S:Type]. ∀[K:RngSig]. ∀[E:basic-formal-sum(K;S) ⟶ basic-formal-sum(K;S) ⟶ ℙ].
  ((∀x,y:basic-formal-sum(K;S).  (bfs-reduce(K;S;x;y)  (E y)))
   EquivRel(basic-formal-sum(K;S);x,y.E y)
   (∀x,y:basic-formal-sum(K;S).  (bfs-equiv(K;S;x;y)  (E y))))


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel_implies: R1 => R2 infix_ap: y bfs-equiv: bfs-equiv(K;S;fs1;fs2)
Lemmas referenced :  least-equiv-implies basic-formal-sum_wf bfs-reduce_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality sqequalRule universeEquality

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[E:basic-formal-sum(K;S)  {}\mrightarrow{}  basic-formal-sum(K;S)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:basic-formal-sum(K;S).    (bfs-reduce(K;S;x;y)  {}\mRightarrow{}  (E  x  y)))
    {}\mRightarrow{}  EquivRel(basic-formal-sum(K;S);x,y.E  x  y)
    {}\mRightarrow{}  (\mforall{}x,y:basic-formal-sum(K;S).    (bfs-equiv(K;S;x;y)  {}\mRightarrow{}  (E  x  y))))



Date html generated: 2018_05_22-PM-09_45_07
Last ObjectModification: 2018_05_20-PM-10_42_29

Theory : linear!algebra


Home Index