Nuprl Lemma : bfs-equiv-implies
∀[S:Type]. ∀[K:RngSig]. ∀[E:basic-formal-sum(K;S) ⟶ basic-formal-sum(K;S) ⟶ ℙ].
  ((∀x,y:basic-formal-sum(K;S).  (bfs-reduce(K;S;x;y) 
⇒ (E x y)))
  
⇒ EquivRel(basic-formal-sum(K;S);x,y.E x y)
  
⇒ (∀x,y:basic-formal-sum(K;S).  (bfs-equiv(K;S;x;y) 
⇒ (E x y))))
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
Lemmas referenced : 
least-equiv-implies, 
basic-formal-sum_wf, 
bfs-reduce_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
sqequalRule, 
universeEquality
Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[E:basic-formal-sum(K;S)  {}\mrightarrow{}  basic-formal-sum(K;S)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:basic-formal-sum(K;S).    (bfs-reduce(K;S;x;y)  {}\mRightarrow{}  (E  x  y)))
    {}\mRightarrow{}  EquivRel(basic-formal-sum(K;S);x,y.E  x  y)
    {}\mRightarrow{}  (\mforall{}x,y:basic-formal-sum(K;S).    (bfs-equiv(K;S;x;y)  {}\mRightarrow{}  (E  x  y))))
Date html generated:
2018_05_22-PM-09_45_07
Last ObjectModification:
2018_05_20-PM-10_42_29
Theory : linear!algebra
Home
Index