Nuprl Lemma : least-equiv-implies
∀[A:Type]. ∀[R,E:A ⟶ A ⟶ ℙ].  (R => E ⇒ EquivRel(A;x,y.E x y) ⇒ least-equiv(A;R) => E)
Proof
Definitions occuring in Statement : 
least-equiv: least-equiv(A;R), 
rel_implies: R1 => R2, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
trans: Trans(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
or: P ∨ Q, 
infix_ap: x f y, 
transitive-reflexive-closure: R^*, 
least-equiv: least-equiv(A;R), 
all: ∀x:A. B[x], 
rel_implies: R1 => R2, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rel_implies_wf, 
equiv_rel_wf, 
least-equiv_wf, 
or_wf, 
transitive-closure-induction, 
iff_weakening_equal
Rules used in proof : 
functionEquality, 
cumulativity, 
functionExtensionality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
isectElimination, 
extract_by_obid, 
introduction, 
universeEquality, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
cut, 
thin, 
unionElimination, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
rename
Latex:
\mforall{}[A:Type].  \mforall{}[R,E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R  =>  E  {}\mRightarrow{}  EquivRel(A;x,y.E  x  y)  {}\mRightarrow{}  least-equiv(A;R)  =>  E)
Date html generated:
2018_05_21-PM-00_51_59
Last ObjectModification:
2018_01_08-AM-10_26_01
Theory : relations2
Home
Index