Nuprl Lemma : least-equiv-implies

[A:Type]. ∀[R,E:A ⟶ A ⟶ ℙ].  (R =>  EquivRel(A;x,y.E y)  least-equiv(A;R) => E)


Proof




Definitions occuring in Statement :  least-equiv: least-equiv(A;R) rel_implies: R1 => R2 equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s] so_lambda: λ2x.t[x] trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B member: t ∈ T or: P ∨ Q infix_ap: y transitive-reflexive-closure: R^* least-equiv: least-equiv(A;R) all: x:A. B[x] rel_implies: R1 => R2 implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  rel_implies_wf equiv_rel_wf least-equiv_wf or_wf transitive-closure-induction iff_weakening_equal
Rules used in proof :  functionEquality cumulativity functionExtensionality because_Cache dependent_functionElimination independent_functionElimination productElimination independent_isectElimination equalitySymmetry equalityTransitivity isectElimination extract_by_obid introduction universeEquality lambdaEquality hypothesis hypothesisEquality applyEquality cut thin unionElimination sqequalRule sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution rename

Latex:
\mforall{}[A:Type].  \mforall{}[R,E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R  =>  E  {}\mRightarrow{}  EquivRel(A;x,y.E  x  y)  {}\mRightarrow{}  least-equiv(A;R)  =>  E)



Date html generated: 2018_05_21-PM-00_51_59
Last ObjectModification: 2018_01_08-AM-10_26_01

Theory : relations2


Home Index