Nuprl Lemma : transitive-closure-induction
∀[A:Type]. ∀[P:A ⟶ ℙ]. ∀[R:A ⟶ A ⟶ ℙ].
  ((∀x,y:A.  ((x R y) ⇒ P[x] ⇒ P[y])) ⇒ (∀x,y:A.  ((x TC(R) y) ⇒ P[x] ⇒ P[y])))
Proof
Definitions occuring in Statement : 
transitive-closure: TC(R), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
rel_implies: R1 => R2, 
infix_ap: x f y, 
trans: Trans(T;x,y.E[x; y]), 
guard: {T}
Lemmas referenced : 
transitive-closure-minimal, 
subtype_rel_self, 
transitive-closure_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
functionEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
Error :inhabitedIsType, 
independent_functionElimination, 
Error :universeIsType, 
instantiate, 
universeEquality, 
Error :functionIsType, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y]))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((x  TC(R)  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])))
Date html generated:
2019_06_20-PM-02_01_30
Last ObjectModification:
2018_10_06-AM-11_23_55
Theory : relations2
Home
Index