Nuprl Lemma : transitive-closure-minimal
∀[A:Type]. ∀[R,Q:A ⟶ A ⟶ ℙ].  (R => Q 
⇒ Trans(A;x,y.x Q y) 
⇒ TC(R) => Q)
Proof
Definitions occuring in Statement : 
transitive-closure: TC(R)
, 
rel_implies: R1 => R2
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
rel_implies: R1 => R2
, 
all: ∀x:A. B[x]
, 
trans: Trans(T;x,y.E[x; y])
, 
transitive-closure: TC(R)
, 
infix_ap: x f y
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
cons: [a / b]
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
hd: hd(l)
, 
spreadn: spread3, 
sq_exists: ∃x:{A| B[x]}
, 
nat: ℕ
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
guard: {T}
, 
colength: colength(L)
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
cand: A c∧ B
Lemmas referenced : 
transitive-closure_wf, 
trans_wf, 
rel_implies_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
list_ind_cons_lemma, 
reduce_tl_cons_lemma, 
equal_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
rel_path_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list_wf, 
list_ind_nil_lemma, 
list_accum_nil_lemma, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
list_accum_cons_lemma, 
subtype_rel_self, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
rename, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
universeEquality, 
setElimination, 
productElimination, 
productEquality, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
hyp_replacement, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
instantiate, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
baseClosed, 
dependent_pairEquality
Latex:
\mforall{}[A:Type].  \mforall{}[R,Q:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R  =>  Q  {}\mRightarrow{}  Trans(A;x,y.x  Q  y)  {}\mRightarrow{}  TC(R)  =>  Q)
Date html generated:
2017_04_17-AM-09_25_53
Last ObjectModification:
2017_02_27-PM-05_26_53
Theory : relations2
Home
Index