Nuprl Lemma : transitive-closure-minimal

[A:Type]. ∀[R,Q:A ⟶ A ⟶ ℙ].  (R =>  Trans(A;x,y.x y)  TC(R) => Q)


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) rel_implies: R1 => R2 trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q rel_implies: R1 => R2 all: x:A. B[x] trans: Trans(T;x,y.E[x; y]) transitive-closure: TC(R) infix_ap: y member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False cons: [a b] rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) hd: hd(l) spreadn: spread3 sq_exists: x:{A| B[x]} nat: ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A guard: {T} colength: colength(L) decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) cand: c∧ B
Lemmas referenced :  transitive-closure_wf trans_wf rel_implies_wf list-cases length_of_nil_lemma product_subtype_list list_ind_cons_lemma reduce_tl_cons_lemma equal_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rel_path_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list_wf list_ind_nil_lemma list_accum_nil_lemma spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_accum_cons_lemma subtype_rel_self subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule rename applyEquality cut introduction extract_by_obid isectElimination thin cumulativity hypothesisEquality functionExtensionality hypothesis lambdaEquality functionEquality universeEquality setElimination productElimination productEquality dependent_functionElimination unionElimination imageElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality hyp_replacement independent_functionElimination equalityTransitivity equalitySymmetry applyLambdaEquality instantiate intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll axiomEquality because_Cache dependent_set_memberEquality addEquality baseClosed dependent_pairEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R,Q:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R  =>  Q  {}\mRightarrow{}  Trans(A;x,y.x  Q  y)  {}\mRightarrow{}  TC(R)  =>  Q)



Date html generated: 2017_04_17-AM-09_25_53
Last ObjectModification: 2017_02_27-PM-05_26_53

Theory : relations2


Home Index