Nuprl Lemma : formal-sum-mul-add

[S:Type]. ∀[K:CRng]. ∀[k,b:|K|]. ∀[x:formal-sum(K;S)].  (k +K x ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum-add: y formal-sum: formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] infix_ap: y universe: Type equal: t ∈ T crng: CRng rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  prop: trans: Trans(T;x,y.E[x; y]) equiv_rel: EquivRel(T;x,y.E[x; y]) implies:  Q infix_ap: y all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rng: Rng crng: CRng and: P ∧ Q quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S) member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] basic-formal-sum: basic-formal-sum(K;S) subtype_rel: A ⊆B it: nil: [] empty-bag: {} map: map(f;as) bag-map: bag-map(f;bs) formal-sum-mul: x list_ind: list_ind append: as bs bag-append: as bs formal-sum-add: y top: Top cand: c∧ B exists: x:A. B[x] or: P ∨ Q bfs-reduce: bfs-reduce(K;S;as;bs)
Lemmas referenced :  crng_wf rng_car_wf formal-sum_wf equal-wf-base equal_wf implies-bfs-equiv formal-sum-add_wf1 rng_plus_wf formal-sum-mul_wf1 bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf quotient-member-eq formal-sum-mul_functionality zero-bfs_wf exists_wf bag_wf empty-bag_wf bag-append_wf infix_ap_wf empty_bag_append_lemma
Rules used in proof :  universeEquality axiomEquality isect_memberEquality productEquality lambdaFormation equalitySymmetry equalityTransitivity independent_functionElimination applyEquality dependent_functionElimination independent_isectElimination lambdaEquality hypothesisEquality cumulativity hypothesis rename setElimination isectElimination extract_by_obid thin productElimination pertypeElimination sqequalRule because_Cache pointwiseFunctionalityForEquality sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation voidEquality voidElimination dependent_pairFormation inrFormation

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[k,b:|K|].  \mforall{}[x:formal-sum(K;S)].    (k  +K  b  *  x  =  k  *  x  +  b  *  x)



Date html generated: 2018_05_22-PM-09_46_03
Last ObjectModification: 2018_01_09-PM-06_08_49

Theory : linear!algebra


Home Index