Nuprl Lemma : formal-sum-mul-add
∀[S:Type]. ∀[K:CRng]. ∀[k,b:|K|]. ∀[x:formal-sum(K;S)].  (k +K b * x = k * x + b * x ∈ formal-sum(K;S))
Proof
Definitions occuring in Statement : 
formal-sum-add: x + y, 
formal-sum: formal-sum(K;S), 
formal-sum-mul: k * x, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng, 
rng_plus: +r, 
rng_car: |r|
Definitions unfolded in proof : 
prop: ℙ, 
trans: Trans(T;x,y.E[x; y]), 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
infix_ap: x f y, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
rng: Rng, 
crng: CRng, 
and: P ∧ Q, 
quotient: x,y:A//B[x; y], 
formal-sum: formal-sum(K;S), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
basic-formal-sum: basic-formal-sum(K;S), 
subtype_rel: A ⊆r B, 
it: ⋅, 
nil: [], 
empty-bag: {}, 
map: map(f;as), 
bag-map: bag-map(f;bs), 
formal-sum-mul: k * x, 
list_ind: list_ind, 
append: as @ bs, 
bag-append: as + bs, 
formal-sum-add: x + y, 
top: Top, 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bfs-reduce: bfs-reduce(K;S;as;bs)
Lemmas referenced : 
crng_wf, 
rng_car_wf, 
formal-sum_wf, 
equal-wf-base, 
equal_wf, 
implies-bfs-equiv, 
formal-sum-add_wf1, 
rng_plus_wf, 
formal-sum-mul_wf1, 
bfs-equiv-rel, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
quotient-member-eq, 
formal-sum-mul_functionality, 
zero-bfs_wf, 
exists_wf, 
bag_wf, 
empty-bag_wf, 
bag-append_wf, 
infix_ap_wf, 
empty_bag_append_lemma
Rules used in proof : 
universeEquality, 
axiomEquality, 
isect_memberEquality, 
productEquality, 
lambdaFormation, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
thin, 
productElimination, 
pertypeElimination, 
sqequalRule, 
because_Cache, 
pointwiseFunctionalityForEquality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
dependent_pairFormation, 
inrFormation
Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[k,b:|K|].  \mforall{}[x:formal-sum(K;S)].    (k  +K  b  *  x  =  k  *  x  +  b  *  x)
Date html generated:
2018_05_22-PM-09_46_03
Last ObjectModification:
2018_01_09-PM-06_08_49
Theory : linear!algebra
Home
Index