Nuprl Lemma : formal-sum-mul_functionality
∀S:Type. ∀K:CRng. ∀x,x':basic-formal-sum(K;S). ∀k,k':|K|.
  bfs-equiv(K;S;x;x') 
⇒ bfs-equiv(K;S;k * x;k' * x') supposing k = k' ∈ |K|
Proof
Definitions occuring in Statement : 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
, 
formal-sum-mul: k * x
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
formal-sum-mul: k * x
, 
top: Top
, 
zero-bfs: 0 * ss
, 
compose: f o g
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
bfs-equiv_wf, 
equal_wf, 
rng_car_wf, 
basic-formal-sum_wf, 
crng_wf, 
formal-sum-mul_wf1, 
bfs-equiv-implies, 
bfs-reduce_wf, 
squash_wf, 
true_wf, 
rng_sig_wf, 
subtype_rel_self, 
iff_weakening_equal, 
implies-bfs-equiv, 
exists_wf, 
bag-append_wf, 
zero-bfs_wf, 
bag_wf, 
rng_plus_wf, 
bag-map-append, 
subtype_rel_bag, 
top_wf, 
bag-map-map, 
bag-map_wf, 
rng_times_zero, 
rng_times_wf, 
crng_times_comm, 
crng_times_ac_1, 
bfs-equiv-rel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
hypothesisEquality, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
unionElimination, 
inlFormation, 
productEquality, 
inrFormation, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
functionExtensionality, 
independent_pairEquality, 
independent_pairFormation
Latex:
\mforall{}S:Type.  \mforall{}K:CRng.  \mforall{}x,x':basic-formal-sum(K;S).  \mforall{}k,k':|K|.
    bfs-equiv(K;S;x;x')  {}\mRightarrow{}  bfs-equiv(K;S;k  *  x;k'  *  x')  supposing  k  =  k'
Date html generated:
2018_05_22-PM-09_45_40
Last ObjectModification:
2018_05_20-PM-10_43_56
Theory : linear!algebra
Home
Index