Nuprl Lemma : formal-sum-mul_functionality

S:Type. ∀K:CRng. ∀x,x':basic-formal-sum(K;S). ∀k,k':|K|.
  bfs-equiv(K;S;x;x')  bfs-equiv(K;S;k x;k' x') supposing k' ∈ |K|


Proof




Definitions occuring in Statement :  bfs-equiv: bfs-equiv(K;S;fs1;fs2) formal-sum-mul: x basic-formal-sum: basic-formal-sum(K;S) uimplies: supposing a all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] crng: CRng rng: Rng true: True so_lambda: λ2y.t[x; y] squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bfs-reduce: bfs-reduce(K;S;as;bs) or: P ∨ Q exists: x:A. B[x] so_lambda: λ2x.t[x] basic-formal-sum: basic-formal-sum(K;S) infix_ap: y so_apply: x[s] formal-sum-mul: x top: Top zero-bfs: ss compose: g equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) cand: c∧ B sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  bfs-equiv_wf equal_wf rng_car_wf basic-formal-sum_wf crng_wf formal-sum-mul_wf1 bfs-equiv-implies bfs-reduce_wf squash_wf true_wf rng_sig_wf subtype_rel_self iff_weakening_equal implies-bfs-equiv exists_wf bag-append_wf zero-bfs_wf bag_wf rng_plus_wf bag-map-append subtype_rel_bag top_wf bag-map-map bag-map_wf rng_times_zero rng_times_wf crng_times_comm crng_times_ac_1 bfs-equiv-rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution isectElimination setElimination hypothesisEquality universeEquality because_Cache natural_numberEquality sqequalRule lambdaEquality independent_functionElimination dependent_functionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate independent_isectElimination productElimination unionElimination inlFormation productEquality inrFormation dependent_pairFormation isect_memberEquality voidElimination voidEquality functionEquality functionExtensionality independent_pairEquality independent_pairFormation

Latex:
\mforall{}S:Type.  \mforall{}K:CRng.  \mforall{}x,x':basic-formal-sum(K;S).  \mforall{}k,k':|K|.
    bfs-equiv(K;S;x;x')  {}\mRightarrow{}  bfs-equiv(K;S;k  *  x;k'  *  x')  supposing  k  =  k'



Date html generated: 2018_05_22-PM-09_45_40
Last ObjectModification: 2018_05_20-PM-10_43_56

Theory : linear!algebra


Home Index