Nuprl Lemma : formal-sum-mul-1
∀[S:Type]. ∀[K:Rng]. ∀[x:formal-sum(K;S)].  (1 * x = x ∈ formal-sum(K;S))
Proof
Definitions occuring in Statement : 
formal-sum: formal-sum(K;S), 
formal-sum-mul: k * x, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
rng: Rng, 
rng_one: 1
Definitions unfolded in proof : 
rng: Rng, 
member: t ∈ T, 
basic-formal-sum: basic-formal-sum(K;S), 
formal-sum-mul: k * x, 
uall: ∀[x:A]. B[x], 
true: True, 
prop: ℙ, 
squash: ↓T, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
quotient: x,y:A//B[x; y], 
formal-sum: formal-sum(K;S)
Lemmas referenced : 
rng_wf, 
rng_car_wf, 
bag_wf, 
true_wf, 
squash_wf, 
bag-map_wf, 
rng_times_one, 
bag-map-trivial, 
iff_weakening_equal, 
equal_wf, 
formal-sum_wf, 
equal-wf-base, 
rng_sig_wf, 
rng_one_wf, 
formal-sum-mul_wf1, 
bfs-equiv-rel, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
quotient-member-eq
Rules used in proof : 
universeEquality, 
cumulativity, 
hypothesisEquality, 
rename, 
setElimination, 
productEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
sqequalRule, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
productElimination, 
functionExtensionality, 
because_Cache, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
applyEquality, 
independent_pairEquality, 
lambdaFormation, 
independent_functionElimination, 
independent_isectElimination, 
dependent_functionElimination, 
pertypeElimination, 
pointwiseFunctionalityForEquality
Latex:
\mforall{}[S:Type].  \mforall{}[K:Rng].  \mforall{}[x:formal-sum(K;S)].    (1  *  x  =  x)
Date html generated:
2018_05_22-PM-09_45_56
Last ObjectModification:
2018_01_09-PM-00_59_58
Theory : linear!algebra
Home
Index