Nuprl Lemma : bag-map-trivial

[A:Type]. ∀[as:bag(A)]. ∀[f:A ⟶ A].  bag-map(f;as) as ∈ bag(A) supposing ∀x:A. ((f x) x ∈ A)


Proof




Definitions occuring in Statement :  bag-map: bag-map(f;bs) bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] bag-map: bag-map(f;bs) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_wf quotient-member-eq permutation_wf permutation-equiv equal_wf bag_wf bag-map_wf equal-wf-base all_wf squash_wf true_wf trivial_map iff_weakening_equal l_member_wf list-subtype-bag
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination cut productElimination thin equalityTransitivity hypothesis equalitySymmetry introduction extract_by_obid isectElimination cumulativity hypothesisEquality lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality functionExtensionality applyEquality productEquality functionEquality universeEquality isect_memberFormation isect_memberEquality axiomEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[A:Type].  \mforall{}[as:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  A].    bag-map(f;as)  =  as  supposing  \mforall{}x:A.  ((f  x)  =  x)



Date html generated: 2017_10_01-AM-08_46_04
Last ObjectModification: 2017_07_26-PM-04_31_06

Theory : bags


Home Index