Nuprl Lemma : formal-sum-mul_wf

[S:Type]. ∀[K:CRng]. ∀[x:formal-sum(K;S)]. ∀[k:|K|].  (k x ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng rng_car: |r|
Definitions unfolded in proof :  prop: implies:  Q all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rng: Rng crng: CRng and: P ∧ Q quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf formal-sum_wf rng_car_wf equal-wf-base formal-sum-mul_wf1 bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf quotient-member-eq formal-sum-mul_functionality
Rules used in proof :  equalitySymmetry equalityTransitivity universeEquality productEquality independent_functionElimination dependent_functionElimination independent_isectElimination lambdaEquality cumulativity hypothesis hypothesisEquality rename setElimination isectElimination extract_by_obid introduction thin productElimination pertypeElimination sqequalRule because_Cache pointwiseFunctionalityForEquality sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[x:formal-sum(K;S)].  \mforall{}[k:|K|].    (k  *  x  \mmember{}  formal-sum(K;S))



Date html generated: 2018_05_22-PM-09_45_42
Last ObjectModification: 2018_01_09-PM-06_08_49

Theory : linear!algebra


Home Index