Nuprl Lemma : formal-sum-add_wf

[S:Type]. ∀[K:RngSig]. ∀[x,y:formal-sum(K;S)].  (x y ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum-add: y formal-sum: formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  prop: implies:  Q all: x:A. B[x] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] and: P ∧ Q quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf formal-sum_wf equal-wf-base formal-sum-add_functionality formal-sum-add_wf1 bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf quotient-member-eq
Rules used in proof :  universeEquality productEquality equalitySymmetry equalityTransitivity independent_functionElimination dependent_functionElimination independent_isectElimination lambdaEquality hypothesis cumulativity hypothesisEquality isectElimination extract_by_obid introduction thin productElimination pertypeElimination sqequalRule because_Cache pointwiseFunctionalityForEquality sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[x,y:formal-sum(K;S)].    (x  +  y  \mmember{}  formal-sum(K;S))



Date html generated: 2018_05_22-PM-09_45_28
Last ObjectModification: 2018_01_09-PM-00_13_28

Theory : linear!algebra


Home Index