Nuprl Lemma : formal-sum-mul-mul

[S:Type]. ∀[K:CRng]. ∀[k,b:|K|]. ∀[x:formal-sum(K;S)].  (k x ∈ formal-sum(K;S))


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] infix_ap: y universe: Type equal: t ∈ T crng: CRng rng_times: * rng_car: |r|
Definitions unfolded in proof :  rng: Rng crng: CRng compose: g top: Top member: t ∈ T basic-formal-sum: basic-formal-sum(K;S) formal-sum-mul: x uall: [x:A]. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T infix_ap: y all: x:A. B[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] quotient: x,y:A//B[x; y] formal-sum: formal-sum(K;S)
Lemmas referenced :  crng_wf rng_car_wf bag_wf bag-map-map iff_weakening_equal rng_times_wf infix_ap_wf rng_times_assoc equal_wf true_wf squash_wf bag-map_wf formal-sum_wf equal-wf-base formal-sum-mul_wf1 bfs-equiv-rel bfs-equiv_wf basic-formal-sum_wf quotient-member-eq rng_sig_wf formal-sum-mul_functionality
Rules used in proof :  universeEquality because_Cache cumulativity hypothesisEquality rename setElimination productEquality hypothesis voidEquality voidElimination isect_memberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality independent_pairEquality productElimination functionExtensionality functionEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality dependent_functionElimination pertypeElimination pointwiseFunctionalityForEquality

Latex:
\mforall{}[S:Type].  \mforall{}[K:CRng].  \mforall{}[k,b:|K|].  \mforall{}[x:formal-sum(K;S)].    (k  *  b  *  x  =  k  *  b  *  x)



Date html generated: 2018_05_22-PM-09_45_52
Last ObjectModification: 2018_01_09-PM-00_59_13

Theory : linear!algebra


Home Index