Nuprl Lemma : vs-map_wf

[K:RngSig]. ∀[A,B:VectorSpace(K)].  (A ⟶ B ∈ Type)


Proof




Definitions occuring in Statement :  vs-map: A ⟶ B vector-space: VectorSpace(K) uall: [x:A]. B[x] member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q vs-map: A ⟶ B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf vs-mul_wf rng_car_wf vs-add_wf equal_wf all_wf vs-point_wf
Rules used in proof :  isect_memberEquality dependent_functionElimination equalitySymmetry equalityTransitivity axiomEquality functionExtensionality applyEquality lambdaEquality productEquality because_Cache hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid functionEquality setEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].    (A  {}\mrightarrow{}  B  \mmember{}  Type)



Date html generated: 2018_05_22-PM-09_42_45
Last ObjectModification: 2018_01_09-AM-10_48_53

Theory : linear!algebra


Home Index