Nuprl Lemma : vs-mul_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[a:|K|]. ∀[y:Point(vs)]. (a * y ∈ Point(vs))
Proof
Definitions occuring in Statement :
vs-mul: a * x
,
vector-space: VectorSpace(K)
,
vs-point: Point(vs)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rng_car: |r|
,
rng_sig: RngSig
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
vs-mul: a * x
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
guard: {T}
,
prop: ℙ
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
subtype_rel: A ⊆r B
,
record-select: r.x
,
record+: record+,
vector-space: VectorSpace(K)
Lemmas referenced :
rng_sig_wf,
vector-space_wf,
rng_car_wf,
vs-point_wf,
rng_plus_wf,
rng_times_wf,
infix_ap_wf,
rng_zero_wf,
rng_one_wf,
equal_wf,
all_wf,
subtype_rel_self
Rules used in proof :
dependent_functionElimination,
because_Cache,
isect_memberEquality,
hypothesisEquality,
thin,
isectElimination,
extract_by_obid,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
hypothesis,
sqequalHypSubstitution,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
rename,
setElimination,
functionExtensionality,
lambdaEquality,
productEquality,
functionEquality,
setEquality,
universeEquality,
instantiate,
tokenEquality,
applyEquality,
dependentIntersectionEqElimination,
dependentIntersectionElimination
Latex:
\mforall{}[K:RngSig]. \mforall{}[vs:VectorSpace(K)]. \mforall{}[a:|K|]. \mforall{}[y:Point(vs)]. (a * y \mmember{} Point(vs))
Date html generated:
2018_05_22-PM-09_40_39
Last ObjectModification:
2018_01_09-AM-10_24_23
Theory : linear!algebra
Home
Index