Nuprl Lemma : one-dim-vs_wf
∀[K:Rng]. (one-dim-vs(K) ∈ VectorSpace(K))
Proof
Definitions occuring in Statement : 
one-dim-vs: one-dim-vs(K)
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
rng: Rng
, 
one-dim-vs: one-dim-vs(K)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_times_assoc, 
rng_times_zero, 
rng_times_one, 
rng_times_over_plus, 
rng_plus_comm, 
iff_weakening_equal, 
rng_plus_assoc, 
true_wf, 
squash_wf, 
equal_wf, 
rng_times_wf, 
rng_plus_wf, 
infix_ap_wf, 
rng_zero_wf, 
rng_car_wf, 
mk-vs_wf
Rules used in proof : 
axiomEquality, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
applyEquality, 
lambdaFormation, 
independent_isectElimination, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:Rng].  (one-dim-vs(K)  \mmember{}  VectorSpace(K))
Date html generated:
2018_05_22-PM-09_41_55
Last ObjectModification:
2018_01_09-AM-10_43_54
Theory : linear!algebra
Home
Index