Nuprl Lemma : one-dim-vs_wf

[K:Rng]. (one-dim-vs(K) ∈ VectorSpace(K))


Proof




Definitions occuring in Statement :  one-dim-vs: one-dim-vs(K) vector-space: VectorSpace(K) uall: [x:A]. B[x] member: t ∈ T rng: Rng
Definitions unfolded in proof :  implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True prop: squash: T all: x:A. B[x] cand: c∧ B and: P ∧ Q uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rng: Rng one-dim-vs: one-dim-vs(K) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_times_assoc rng_times_zero rng_times_one rng_times_over_plus rng_plus_comm iff_weakening_equal rng_plus_assoc true_wf squash_wf equal_wf rng_times_wf rng_plus_wf infix_ap_wf rng_zero_wf rng_car_wf mk-vs_wf
Rules used in proof :  axiomEquality independent_pairFormation independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination applyEquality lambdaFormation independent_isectElimination hypothesisEquality lambdaEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  (one-dim-vs(K)  \mmember{}  VectorSpace(K))



Date html generated: 2018_05_22-PM-09_41_55
Last ObjectModification: 2018_01_09-AM-10_43_54

Theory : linear!algebra


Home Index