Nuprl Lemma : free-vs-unique

S:Type. ∀K:CRng. ∀V:VectorSpace(K).
  (∃i:S ⟶ Point(V). ∀vs:VectorSpace(K). ∀f:S ⟶ Point(vs).  ∃!h:V ⟶ vs. ∀s:S. ((h (i s)) (f s) ∈ Point(vs))
  ⇐⇒ V ≅ free-vs(K;S))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-iso: A ≅ B vs-map: A ⟶ B vector-space: VectorSpace(K) vs-point: Point(vs) exists!: !x:T. P[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] crng: CRng rng: Rng so_lambda: λ2x.t[x] prop: vs-map: A ⟶ B so_apply: x[s] rev_implies:  Q exists!: !x:T. P[x] cand: c∧ B free-vs-inc: <s> single-bag: {x} cons: [a b] compose: g squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} vs-iso: A ≅ B
Lemmas referenced :  vs-point_wf exists!_wf vs-map_wf equal_wf vs-iso_wf free-vs_wf vector-space_wf crng_wf istype-universe free-vs-property free-vs-inc_wf vs-add_wf vs-mul_wf rng_car_wf squash_wf true_wf subtype_rel_self iff_weakening_equal vs-map-compose
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation sqequalRule productIsType functionIsType universeIsType hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesis inhabitedIsType because_Cache lambdaEquality_alt functionEquality applyEquality dependent_functionElimination instantiate universeEquality productElimination dependent_set_memberEquality_alt equalityIsType1 independent_functionElimination imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_isectElimination applyLambdaEquality dependent_pairFormation_alt functionExtensionality hyp_replacement functionExtensionality_alt

Latex:
\mforall{}S:Type.  \mforall{}K:CRng.  \mforall{}V:VectorSpace(K).
    (\mexists{}i:S  {}\mrightarrow{}  Point(V).  \mforall{}vs:VectorSpace(K).  \mforall{}f:S  {}\mrightarrow{}  Point(vs).    \mexists{}!h:V  {}\mrightarrow{}  vs.  \mforall{}s:S.  ((h  (i  s))  =  (f  s))
    \mLeftarrow{}{}\mRightarrow{}  V  \mcong{}  free-vs(K;S))



Date html generated: 2019_10_31-AM-06_29_57
Last ObjectModification: 2019_08_02-PM-04_05_04

Theory : linear!algebra


Home Index