Nuprl Lemma : free-vs-unique
∀S:Type. ∀K:CRng. ∀V:VectorSpace(K).
  (∃i:S ⟶ Point(V). ∀vs:VectorSpace(K). ∀f:S ⟶ Point(vs).  ∃!h:V ⟶ vs. ∀s:S. ((h (i s)) = (f s) ∈ Point(vs))
  
⇐⇒ V ≅ free-vs(K;S))
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
vs-iso: A ≅ B
, 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
exists!: ∃!x:T. P[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
vs-map: A ⟶ B
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists!: ∃!x:T. P[x]
, 
cand: A c∧ B
, 
free-vs-inc: <s>
, 
single-bag: {x}
, 
cons: [a / b]
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
vs-iso: A ≅ B
Lemmas referenced : 
vs-point_wf, 
exists!_wf, 
vs-map_wf, 
equal_wf, 
vs-iso_wf, 
free-vs_wf, 
vector-space_wf, 
crng_wf, 
istype-universe, 
free-vs-property, 
free-vs-inc_wf, 
vs-add_wf, 
vs-mul_wf, 
rng_car_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
vs-map-compose
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesis, 
inhabitedIsType, 
because_Cache, 
lambdaEquality_alt, 
functionEquality, 
applyEquality, 
dependent_functionElimination, 
instantiate, 
universeEquality, 
productElimination, 
dependent_set_memberEquality_alt, 
equalityIsType1, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
applyLambdaEquality, 
dependent_pairFormation_alt, 
functionExtensionality, 
hyp_replacement, 
functionExtensionality_alt
Latex:
\mforall{}S:Type.  \mforall{}K:CRng.  \mforall{}V:VectorSpace(K).
    (\mexists{}i:S  {}\mrightarrow{}  Point(V).  \mforall{}vs:VectorSpace(K).  \mforall{}f:S  {}\mrightarrow{}  Point(vs).    \mexists{}!h:V  {}\mrightarrow{}  vs.  \mforall{}s:S.  ((h  (i  s))  =  (f  s))
    \mLeftarrow{}{}\mRightarrow{}  V  \mcong{}  free-vs(K;S))
Date html generated:
2019_10_31-AM-06_29_57
Last ObjectModification:
2019_08_02-PM-04_05_04
Theory : linear!algebra
Home
Index