Nuprl Lemma : vs-iso_wf
∀[K:RngSig]. ∀[A,B:VectorSpace(K)].  (A ≅ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
vs-iso: A ≅ B
, 
vector-space: VectorSpace(K)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
vs-map: A ⟶ B
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
vs-iso: A ≅ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
vector-space_wf, 
equal_wf, 
vs-point_wf, 
all_wf, 
vs-map_wf, 
exists_wf
Rules used in proof : 
isect_memberEquality, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
rename, 
setElimination, 
applyEquality, 
productEquality, 
because_Cache, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].    (A  \mcong{}  B  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-09_43_17
Last ObjectModification:
2018_01_09-AM-10_50_41
Theory : linear!algebra
Home
Index