Nuprl Lemma : vs-map-compose

[K:RngSig]. ∀[A,B,C:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (g f ∈ A ⟶ C)


Proof




Definitions occuring in Statement :  vs-map: A ⟶ B vector-space: VectorSpace(K) compose: g uall: [x:A]. B[x] member: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T all: x:A. B[x] cand: c∧ B compose: g and: P ∧ Q vs-map: A ⟶ B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf vs-map_wf all_wf rng_car_wf vs-mul_wf iff_weakening_equal vs-add_wf true_wf squash_wf equal_wf vs-point_wf compose_wf
Rules used in proof :  isect_memberEquality axiomEquality productEquality independent_pairFormation independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality because_Cache dependent_functionElimination universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality lambdaFormation sqequalRule applyEquality functionExtensionality hypothesis hypothesisEquality isectElimination extract_by_obid productElimination dependent_set_memberEquality rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B,C:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (g  o  f  \mmember{}  A  {}\mrightarrow{}  C)



Date html generated: 2018_05_22-PM-09_42_47
Last ObjectModification: 2018_01_09-AM-10_49_45

Theory : linear!algebra


Home Index