Nuprl Lemma : vs-map-compose
∀[K:RngSig]. ∀[A,B,C:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[g:B ⟶ C].  (g o f ∈ A ⟶ C)
Proof
Definitions occuring in Statement : 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
compose: f o g
, 
and: P ∧ Q
, 
vs-map: A ⟶ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
vector-space_wf, 
vs-map_wf, 
all_wf, 
rng_car_wf, 
vs-mul_wf, 
iff_weakening_equal, 
vs-add_wf, 
true_wf, 
squash_wf, 
equal_wf, 
vs-point_wf, 
compose_wf
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
productEquality, 
independent_pairFormation, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
lambdaFormation, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
productElimination, 
dependent_set_memberEquality, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B,C:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:B  {}\mrightarrow{}  C].    (g  o  f  \mmember{}  A  {}\mrightarrow{}  C)
Date html generated:
2018_05_22-PM-09_42_47
Last ObjectModification:
2018_01_09-AM-10_49_45
Theory : linear!algebra
Home
Index