Nuprl Lemma : free-vs-inc_wf
∀[S:Type]. ∀[K:RngSig]. ∀[s:S].  (<s> ∈ Point(free-vs(K;S)))
Proof
Definitions occuring in Statement : 
free-vs-inc: <s>
, 
free-vs: free-vs(K;S)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
all: ∀x:A. B[x]
, 
free-vs-inc: <s>
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
formal-sum: formal-sum(K;S)
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
mk-vs: mk-vs, 
vs-point: Point(vs)
, 
free-vs: free-vs(K;S)
Lemmas referenced : 
rng_sig_wf, 
bag_wf, 
rng_one_wf, 
rng_car_wf, 
single-bag_wf, 
bfs-equiv-rel, 
bfs-equiv_wf, 
basic-formal-sum_wf, 
subtype_quotient, 
rec_select_update_lemma
Rules used in proof : 
universeEquality, 
extract_by_obid, 
because_Cache, 
thin, 
isectElimination, 
isect_memberEquality, 
hypothesisEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lambdaEquality, 
independent_pairEquality, 
cumulativity, 
productEquality, 
dependent_functionElimination, 
independent_isectElimination, 
voidEquality, 
voidElimination
Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[s:S].    (<s>  \mmember{}  Point(free-vs(K;S)))
Date html generated:
2018_05_22-PM-09_46_16
Last ObjectModification:
2018_01_09-PM-00_26_39
Theory : linear!algebra
Home
Index