Nuprl Lemma : vs-iso_inversion
∀[K:RngSig]. ∀[A,B:VectorSpace(K)]. (A ≅ B
⇒ B ≅ A)
Proof
Definitions occuring in Statement :
vs-iso: A ≅ B
,
vector-space: VectorSpace(K)
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
rng_sig: RngSig
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
vs-iso: A ≅ B
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
member: t ∈ T
,
cand: A c∧ B
,
all: ∀x:A. B[x]
,
vs-map: A ⟶ B
,
prop: ℙ
Lemmas referenced :
vs-point_wf,
vs-iso_wf,
vector-space_wf,
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
lambdaFormation_alt,
sqequalHypSubstitution,
productElimination,
thin,
dependent_pairFormation_alt,
hypothesisEquality,
cut,
hypothesis,
independent_pairFormation,
sqequalRule,
productIsType,
functionIsType,
universeIsType,
introduction,
extract_by_obid,
isectElimination,
equalityIstype,
because_Cache,
applyEquality,
setElimination,
rename,
inhabitedIsType,
dependent_functionElimination
Latex:
\mforall{}[K:RngSig]. \mforall{}[A,B:VectorSpace(K)]. (A \mcong{} B {}\mRightarrow{} B \mcong{} A)
Date html generated:
2019_10_31-AM-06_27_46
Last ObjectModification:
2019_08_02-PM-04_05_11
Theory : linear!algebra
Home
Index