Nuprl Lemma : unique-one-dim-vs-map
∀K:CRng. ∀vs:VectorSpace(K). ∀v:Point(vs).  ∃!h:one-dim-vs(K) ⟶ vs. ((h 1) = v ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-map: A ⟶ B
, 
one-dim-vs: one-dim-vs(K)
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
exists!: ∃!x:T. P[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists!: ∃!x:T. P[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
implies: P 
⇒ Q
, 
vs-map: A ⟶ B
, 
subtype_rel: A ⊆r B
, 
rng_car: |r|
, 
pi1: fst(t)
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
one-dim-vs: one-dim-vs(K)
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
vs-mul: a * x
, 
top: Top
, 
vs-add: x + y
, 
infix_ap: x f y
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
vs-mul-one, 
rng_one_wf, 
subtype_rel_self, 
vs-point_wf, 
one-dim-vs_wf, 
vs-map_wf, 
vector-space_wf, 
crng_wf, 
rec_select_update_lemma, 
istype-void, 
vs-mul_wf, 
rng_car_wf, 
vs-mul-add, 
vs-mul-mul, 
rng_plus_wf, 
vs-add_wf, 
rng_times_wf, 
vs-map-eq, 
rng_times_one, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
equalityIstype, 
because_Cache, 
applyEquality, 
universeIsType, 
productIsType, 
functionIsType, 
inhabitedIsType, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
lambdaEquality_alt, 
equalitySymmetry, 
independent_isectElimination, 
functionExtensionality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}K:CRng.  \mforall{}vs:VectorSpace(K).  \mforall{}v:Point(vs).    \mexists{}!h:one-dim-vs(K)  {}\mrightarrow{}  vs.  ((h  1)  =  v)
Date html generated:
2019_10_31-AM-06_27_11
Last ObjectModification:
2019_08_02-PM-04_08_21
Theory : linear!algebra
Home
Index