Nuprl Lemma : unique-one-dim-vs-map

K:CRng. ∀vs:VectorSpace(K). ∀v:Point(vs).  ∃!h:one-dim-vs(K) ⟶ vs. ((h 1) v ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-map: A ⟶ B one-dim-vs: one-dim-vs(K) vector-space: VectorSpace(K) vs-point: Point(vs) exists!: !x:T. P[x] all: x:A. B[x] apply: a equal: t ∈ T crng: CRng rng_one: 1
Definitions unfolded in proof :  all: x:A. B[x] exists!: !x:T. P[x] exists: x:A. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] crng: CRng rng: Rng implies:  Q vs-map: A ⟶ B subtype_rel: A ⊆B rng_car: |r| pi1: fst(t) vs-point: Point(vs) record-select: r.x one-dim-vs: one-dim-vs(K) mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt vs-mul: x top: Top vs-add: y infix_ap: y uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  vs-mul-one rng_one_wf subtype_rel_self vs-point_wf one-dim-vs_wf vs-map_wf vector-space_wf crng_wf rec_select_update_lemma istype-void vs-mul_wf rng_car_wf vs-mul-add vs-mul-mul rng_plus_wf vs-add_wf rng_times_wf vs-map-eq rng_times_one equal_wf squash_wf true_wf istype-universe iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt dependent_pairFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_pairFormation equalityIstype because_Cache applyEquality universeIsType productIsType functionIsType inhabitedIsType dependent_functionElimination dependent_set_memberEquality_alt isect_memberEquality_alt voidElimination lambdaEquality_alt equalitySymmetry independent_isectElimination functionExtensionality productElimination imageElimination equalityTransitivity instantiate universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination applyLambdaEquality

Latex:
\mforall{}K:CRng.  \mforall{}vs:VectorSpace(K).  \mforall{}v:Point(vs).    \mexists{}!h:one-dim-vs(K)  {}\mrightarrow{}  vs.  ((h  1)  =  v)



Date html generated: 2019_10_31-AM-06_27_11
Last ObjectModification: 2019_08_02-PM-04_08_21

Theory : linear!algebra


Home Index