Nuprl Lemma : unique-one-dim-vs-map
∀K:CRng. ∀vs:VectorSpace(K). ∀v:Point(vs).  ∃!h:one-dim-vs(K) ⟶ vs. ((h 1) = v ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-map: A ⟶ B, 
one-dim-vs: one-dim-vs(K), 
vector-space: VectorSpace(K), 
vs-point: Point(vs), 
exists!: ∃!x:T. P[x], 
all: ∀x:A. B[x], 
apply: f a, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
exists!: ∃!x:T. P[x], 
exists: ∃x:A. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
crng: CRng, 
rng: Rng, 
implies: P ⇒ Q, 
vs-map: A ⟶ B, 
subtype_rel: A ⊆r B, 
rng_car: |r|, 
pi1: fst(t), 
vs-point: Point(vs), 
record-select: r.x, 
one-dim-vs: one-dim-vs(K), 
mk-vs: mk-vs, 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
vs-mul: a * x, 
top: Top, 
vs-add: x + y, 
infix_ap: x f y, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
vs-mul-one, 
rng_one_wf, 
subtype_rel_self, 
vs-point_wf, 
one-dim-vs_wf, 
vs-map_wf, 
vector-space_wf, 
crng_wf, 
rec_select_update_lemma, 
istype-void, 
vs-mul_wf, 
rng_car_wf, 
vs-mul-add, 
vs-mul-mul, 
rng_plus_wf, 
vs-add_wf, 
rng_times_wf, 
vs-map-eq, 
rng_times_one, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
equalityIstype, 
because_Cache, 
applyEquality, 
universeIsType, 
productIsType, 
functionIsType, 
inhabitedIsType, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
lambdaEquality_alt, 
equalitySymmetry, 
independent_isectElimination, 
functionExtensionality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}K:CRng.  \mforall{}vs:VectorSpace(K).  \mforall{}v:Point(vs).    \mexists{}!h:one-dim-vs(K)  {}\mrightarrow{}  vs.  ((h  1)  =  v)
Date html generated:
2019_10_31-AM-06_27_11
Last ObjectModification:
2019_08_02-PM-04_08_21
Theory : linear!algebra
Home
Index