Nuprl Lemma : vs-mul-mul
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[a,b:|K|]. ∀[x:Point(vs)].  (a * b * x = a * b * x ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-mul: a * x
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
, 
rng_times: *
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
vs-mul: a * x
, 
infix_ap: x f y
, 
guard: {T}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
vector-space: VectorSpace(K)
Lemmas referenced : 
rng_plus_wf, 
rng_times_wf, 
infix_ap_wf, 
rng_zero_wf, 
rng_one_wf, 
rng_car_wf, 
equal_wf, 
all_wf, 
vs-point_wf, 
subtype_rel_self
Rules used in proof : 
axiomEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
sqequalRule, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
applyLambdaEquality, 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
functionEquality, 
setEquality, 
universeEquality, 
extract_by_obid, 
instantiate, 
tokenEquality, 
applyEquality, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
dependent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[a,b:|K|].  \mforall{}[x:Point(vs)].    (a  *  b  *  x  =  a  *  b  *  x)
Date html generated:
2018_05_22-PM-09_40_43
Last ObjectModification:
2018_01_09-AM-10_28_26
Theory : linear!algebra
Home
Index