Nuprl Lemma : vs-map-eq
∀[K:RngSig]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[g:Point(A) ⟶ Point(B)].
  f = g ∈ A ⟶ B supposing f = g ∈ (Point(A) ⟶ Point(B))
Proof
Definitions occuring in Statement : 
vs-map: A ⟶ B
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
vs-map: A ⟶ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
vs-point_wf, 
vs-add_wf, 
rng_car_wf, 
vs-mul_wf, 
vs-map_wf, 
vector-space_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality_alt, 
hypothesis, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
equalityIstype, 
applyEquality, 
dependent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:Point(A)  {}\mrightarrow{}  Point(B)].    f  =  g  supposing  f  =  g
Date html generated:
2019_10_31-AM-06_26_52
Last ObjectModification:
2019_08_01-AM-10_35_41
Theory : linear!algebra
Home
Index