Nuprl Lemma : vs-map-eq

[K:RngSig]. ∀[A,B:VectorSpace(K)]. ∀[f:A ⟶ B]. ∀[g:Point(A) ⟶ Point(B)].
  g ∈ A ⟶ supposing g ∈ (Point(A) ⟶ Point(B))


Proof




Definitions occuring in Statement :  vs-map: A ⟶ B vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a vs-map: A ⟶ B and: P ∧ Q all: x:A. B[x] member: t ∈ T
Lemmas referenced :  vs-point_wf vs-add_wf rng_car_wf vs-mul_wf vs-map_wf vector-space_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality_alt hypothesis sqequalRule productIsType functionIsType universeIsType introduction extract_by_obid isectElimination hypothesisEquality because_Cache equalityIstype applyEquality dependent_functionElimination

Latex:
\mforall{}[K:RngSig].  \mforall{}[A,B:VectorSpace(K)].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[g:Point(A)  {}\mrightarrow{}  Point(B)].    f  =  g  supposing  f  =  g



Date html generated: 2019_10_31-AM-06_26_52
Last ObjectModification: 2019_08_01-AM-10_35_41

Theory : linear!algebra


Home Index