Step
*
of Lemma
fs-in-subtype-subspace
∀[K:CRng]. ∀[S,T:Type]. vs-subspace(K;free-vs(K;S);f.fs-in-subtype(K;S;T;f)) supposing strong-subtype(T;S)
BY
{ (Auto
THEN DupHyp 4
THEN (RWO "strong-subtype-iff-respects-equality" (-1) THENA Auto)
THEN InstLemma `equal-wf` [⌜S⌝;⌜S⌝;⌜T⌝]⋅
THEN Auto
THEN D 0
THEN Auto) }
1
1. K : CRng
2. S : Type
3. T : Type
4. strong-subtype(T;S)
5. T ⊆r S
6. respects-equality(S;T)
7. ∀[a,b:S]. (a = b ∈ T ∈ ℙ)
⊢ fs-in-subtype(K;S;T;0)
2
1. K : CRng
2. S : Type
3. T : Type
4. strong-subtype(T;S)
5. T ⊆r S
6. respects-equality(S;T)
7. ∀[a,b:S]. (a = b ∈ T ∈ ℙ)
8. f : Point(free-vs(K;S))
9. y : Point(free-vs(K;S))
10. fs-in-subtype(K;S;T;f)
11. fs-in-subtype(K;S;T;y)
⊢ fs-in-subtype(K;S;T;f + y)
3
1. K : CRng
2. S : Type
3. T : Type
4. strong-subtype(T;S)
5. T ⊆r S
6. respects-equality(S;T)
7. ∀[a,b:S]. (a = b ∈ T ∈ ℙ)
8. ∀f,y:Point(free-vs(K;S)). (fs-in-subtype(K;S;T;f)
⇒ fs-in-subtype(K;S;T;y)
⇒ fs-in-subtype(K;S;T;f + y))
9. f : Point(free-vs(K;S))
10. a : |K|
11. fs-in-subtype(K;S;T;f)
⊢ fs-in-subtype(K;S;T;a * f)
Latex:
Latex:
\mforall{}[K:CRng]. \mforall{}[S,T:Type].
vs-subspace(K;free-vs(K;S);f.fs-in-subtype(K;S;T;f)) supposing strong-subtype(T;S)
By
Latex:
(Auto
THEN DupHyp 4
THEN (RWO "strong-subtype-iff-respects-equality" (-1) THENA Auto)
THEN InstLemma `equal-wf` [\mkleeneopen{}S\mkleeneclose{};\mkleeneopen{}S\mkleeneclose{};\mkleeneopen{}T\mkleeneclose{}]\mcdot{}
THEN Auto
THEN D 0
THEN Auto)
Home
Index