Nuprl Lemma : fs-in-subtype-subspace
∀[K:CRng]. ∀[S,T:Type].  vs-subspace(K;free-vs(K;S);f.fs-in-subtype(K;S;T;f)) supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
free-vs: free-vs(K;S)
, 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
fs-predicate: fs-predicate(K;S;p.P[p];f)
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
crng: CRng
, 
rng: Rng
, 
subtype_rel: A ⊆r B
, 
vs-point: Point(vs)
, 
record-select: r.x
, 
free-vs: free-vs(K;S)
, 
mk-vs: mk-vs, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
formal-sum: formal-sum(K;S)
, 
quotient: x,y:A//B[x; y]
, 
vs-0: 0
, 
empty-bag: {}
, 
nil: []
, 
it: ⋅
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
exists: ∃x:A. B[x]
, 
bfs-predicate: bfs-predicate(K;S;p.P[p];b)
, 
pi2: snd(t)
, 
false: False
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
respects-equality: respects-equality(S;T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag-append: as + bs
, 
append: as @ bs
, 
list_ind: list_ind, 
vs-add: x + y
, 
formal-sum-add: x + y
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
formal-sum-mul: k * x
, 
bag-map: bag-map(f;bs)
, 
map: map(f;as)
, 
vs-mul: a * x
, 
infix_ap: x f y
, 
top: Top
, 
pi1: fst(t)
Lemmas referenced : 
strong-subtype-iff-respects-equality, 
strong-subtype_wf, 
istype-universe, 
crng_wf, 
fs-in-subtype_wf, 
subtype_rel_self, 
formal-sum_wf, 
vs-point_wf, 
free-vs_wf, 
rng_car_wf, 
equal-wf, 
empty-bag_wf, 
bag-member-empty-iff, 
bag-member_wf, 
respects-equality-quotient1, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
bfs-equiv-rel, 
respects-equality-trivial, 
bfs-predicate_wf, 
pi2_wf, 
bag-append_wf, 
vs-add_wf, 
subtype_quotient, 
squash_wf, 
true_wf, 
vector-space_wf, 
rng_sig_wf, 
equal_functionality_wrt_subtype_rel2, 
bag-member-append, 
trivial-equal, 
member_wf, 
formal-sum-mul_wf1, 
vs-mul_wf, 
bag_wf, 
bag-member-map, 
rng_times_wf, 
pi1_wf_top, 
istype-void, 
strong-subtype-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
productEquality, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
productIsType, 
equalityIstype, 
sqequalBase, 
natural_numberEquality, 
unionElimination, 
hyp_replacement, 
spreadEquality, 
applyLambdaEquality
Latex:
\mforall{}[K:CRng].  \mforall{}[S,T:Type].
    vs-subspace(K;free-vs(K;S);f.fs-in-subtype(K;S;T;f))  supposing  strong-subtype(T;S)
Date html generated:
2019_10_31-AM-06_30_04
Last ObjectModification:
2019_08_19-PM-01_09_06
Theory : linear!algebra
Home
Index