Nuprl Lemma : fs-in-subtype-subspace

[K:CRng]. ∀[S,T:Type].  vs-subspace(K;free-vs(K;S);f.fs-in-subtype(K;S;T;f)) supposing strong-subtype(T;S)


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) fs-in-subtype: fs-in-subtype(K;S;T;f) vs-subspace: vs-subspace(K;vs;x.P[x]) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q vs-subspace: vs-subspace(K;vs;x.P[x]) fs-in-subtype: fs-in-subtype(K;S;T;f) fs-predicate: fs-predicate(K;S;p.P[p];f) squash: T all: x:A. B[x] implies:  Q prop: cand: c∧ B crng: CRng rng: Rng subtype_rel: A ⊆B vs-point: Point(vs) record-select: r.x free-vs: free-vs(K;S) mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt formal-sum: formal-sum(K;S) quotient: x,y:A//B[x; y] vs-0: 0 empty-bag: {} nil: [] it: basic-formal-sum: basic-formal-sum(K;S) exists: x:A. B[x] bfs-predicate: bfs-predicate(K;S;p.P[p];b) pi2: snd(t) false: False so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] respects-equality: respects-equality(S;T) so_lambda: λ2x.t[x] so_apply: x[s] bag-append: as bs append: as bs list_ind: list_ind vs-add: y formal-sum-add: y guard: {T} true: True iff: ⇐⇒ Q sq_or: a ↓∨ b or: P ∨ Q formal-sum-mul: x bag-map: bag-map(f;bs) map: map(f;as) vs-mul: x infix_ap: y top: Top pi1: fst(t)
Lemmas referenced :  strong-subtype-iff-respects-equality strong-subtype_wf istype-universe crng_wf fs-in-subtype_wf subtype_rel_self formal-sum_wf vs-point_wf free-vs_wf rng_car_wf equal-wf empty-bag_wf bag-member-empty-iff bag-member_wf respects-equality-quotient1 basic-formal-sum_wf bfs-equiv_wf bfs-equiv-rel respects-equality-trivial bfs-predicate_wf pi2_wf bag-append_wf vs-add_wf subtype_quotient squash_wf true_wf vector-space_wf rng_sig_wf equal_functionality_wrt_subtype_rel2 bag-member-append trivial-equal member_wf formal-sum-mul_wf1 vs-mul_wf bag_wf bag-member-map rng_times_wf pi1_wf_top istype-void strong-subtype-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination sqequalRule independent_pairEquality imageElimination imageMemberEquality baseClosed lambdaEquality_alt dependent_functionElimination functionIsTypeImplies inhabitedIsType universeIsType isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality independent_pairFormation lambdaFormation_alt setElimination rename applyEquality because_Cache independent_functionElimination productEquality dependent_pairFormation_alt equalityTransitivity equalitySymmetry voidElimination productIsType equalityIstype sqequalBase natural_numberEquality unionElimination hyp_replacement spreadEquality applyLambdaEquality

Latex:
\mforall{}[K:CRng].  \mforall{}[S,T:Type].
    vs-subspace(K;free-vs(K;S);f.fs-in-subtype(K;S;T;f))  supposing  strong-subtype(T;S)



Date html generated: 2019_10_31-AM-06_30_04
Last ObjectModification: 2019_08_19-PM-01_09_06

Theory : linear!algebra


Home Index