Nuprl Lemma : bfs-predicate_wf

[K:RngSig]. ∀[S:Type]. ∀[P:(|K| × S) ⟶ ℙ]. ∀[b:basic-formal-sum(K;S)].  (bfs-predicate(K;S;p.P[p];b) ∈ ℙ)


Proof




Definitions occuring in Statement :  bfs-predicate: bfs-predicate(K;S;p.P[p];b) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] member: t ∈ T bfs-predicate: bfs-predicate(K;S;p.P[p];b) prop: all: x:A. B[x] implies:  Q so_apply: x[s]
Lemmas referenced :  rng_car_wf bag-member_wf bag_wf istype-universe rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut functionEquality productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType productIsType universeEquality instantiate

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[P:(|K|  \mtimes{}  S)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[b:basic-formal-sum(K;S)].
    (bfs-predicate(K;S;p.P[p];b)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_31-AM-06_28_23
Last ObjectModification: 2019_08_19-AM-10_44_37

Theory : linear!algebra


Home Index