Nuprl Lemma : fs-in-subtype_wf
∀[K:RngSig]. ∀[S,T:Type].  ∀[f:formal-sum(K;S)]. (fs-in-subtype(K;S;T;f) ∈ ℙ) supposing strong-subtype(T;S)
Proof
Definitions occuring in Statement : 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
formal-sum: formal-sum(K;S)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
pi2: snd(t)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
fs-predicate_wf, 
strong-subtype-iff-respects-equality, 
rng_car_wf, 
formal-sum_wf, 
strong-subtype_wf, 
istype-universe, 
rng_sig_wf, 
equal-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
productElimination, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
productIsType, 
universeIsType, 
instantiate, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[f:formal-sum(K;S)].  (fs-in-subtype(K;S;T;f)  \mmember{}  \mBbbP{})  supposing  strong-subtype(T;S)
Date html generated:
2019_10_31-AM-06_29_06
Last ObjectModification:
2019_08_19-PM-01_16_34
Theory : linear!algebra
Home
Index