Nuprl Lemma : fs-predicate_wf

[K:RngSig]. ∀[S:Type]. ∀[P:(|K| × S) ⟶ ℙ]. ∀[f:formal-sum(K;S)].  (fs-predicate(K;S;p.P[p];f) ∈ ℙ)


Proof




Definitions occuring in Statement :  fs-predicate: fs-predicate(K;S;p.P[p];f) formal-sum: formal-sum(K;S) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fs-predicate: fs-predicate(K;S;p.P[p];f) so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B formal-sum: formal-sum(K;S) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] so_apply: x[s]
Lemmas referenced :  squash_wf exists_wf basic-formal-sum_wf equal_wf formal-sum_wf subtype_quotient bfs-equiv_wf bfs-equiv-rel bfs-predicate_wf rng_car_wf istype-universe rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality_alt productEquality because_Cache applyEquality inhabitedIsType independent_isectElimination dependent_functionElimination universeIsType axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies functionIsType productIsType universeEquality instantiate

Latex:
\mforall{}[K:RngSig].  \mforall{}[S:Type].  \mforall{}[P:(|K|  \mtimes{}  S)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:formal-sum(K;S)].    (fs-predicate(K;S;p.P[p];f)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_31-AM-06_29_00
Last ObjectModification: 2019_08_19-AM-10_52_24

Theory : linear!algebra


Home Index