Step * 3 of Lemma generated-subspace-is-subspace


1. Rng
2. vs VectorSpace(K)
3. [P] Point(vs) ⟶ ℙ
4. Point(vs)
5. Point(vs)
6. 0 ∈ Point(vs)
7. l_tree(x:Point(vs) × P[x];|K|)
8. vs-tree-val(vs;t) ∈ Point(vs)
9. |K|
⊢ (k 0 ∈ Point(vs)) ∨ (∃t:l_tree(x:Point(vs) × P[x];|K|). (k vs-tree-val(vs;t) ∈ Point(vs)))
BY
((OrRight THENA Auto)
   THEN (D With ⌜l_tree_node(k;t;l_tree_node(0;t;t))⌝  THEN Auto)
   THEN Unfold `vs-tree-val` 0
   THEN Reduce 0
   THEN Fold `vs-tree-val` 0
   THEN (RWO "-2 -4" THENA Auto)
   THEN RW VSNormC 0
   THEN Auto
   THEN GenConclTerm ⌜vs-tree-val(vs;t) vs-tree-val(vs;t)⌝⋅
   THEN Auto) }

1
1. Rng
2. vs VectorSpace(K)
3. Point(vs) ⟶ ℙ
4. Point(vs)
5. Point(vs)
6. 0 ∈ Point(vs)
7. l_tree(x:Point(vs) × P[x];|K|)
8. vs-tree-val(vs;t) ∈ Point(vs)
9. |K|
10. Point(vs)
11. vs-tree-val(vs;t) vs-tree-val(vs;t) v ∈ Point(vs)
⊢ vs-tree-val(vs;t) vs-tree-val(vs;t) ∈ Point(vs)


Latex:


Latex:

1.  K  :  Rng
2.  vs  :  VectorSpace(K)
3.  [P]  :  Point(vs)  {}\mrightarrow{}  \mBbbP{}
4.  w  :  Point(vs)
5.  y  :  Point(vs)
6.  w  =  0
7.  t  :  l\_tree(x:Point(vs)  \mtimes{}  P[x];|K|)
8.  y  =  vs-tree-val(vs;t)
9.  k  :  |K|
\mvdash{}  (k  *  w  +  y  =  0)  \mvee{}  (\mexists{}t:l\_tree(x:Point(vs)  \mtimes{}  P[x];|K|).  (k  *  w  +  y  =  vs-tree-val(vs;t)))


By


Latex:
((OrRight  THENA  Auto)
  THEN  (D  0  With  \mkleeneopen{}l\_tree\_node(k;t;l\_tree\_node(0;t;t))\mkleeneclose{}    THEN  Auto)
  THEN  Unfold  `vs-tree-val`  0
  THEN  Reduce  0
  THEN  Fold  `vs-tree-val`  0
  THEN  (RWO  "-2  -4"  0  THENA  Auto)
  THEN  RW  VSNormC  0
  THEN  Auto
  THEN  GenConclTerm  \mkleeneopen{}vs-tree-val(vs;t)  +  vs-tree-val(vs;t)\mkleeneclose{}\mcdot{}
  THEN  Auto)




Home Index