Nuprl Lemma : generated-subspace-is-subspace

K:Rng. ∀vs:VectorSpace(K).  ∀[P:Point(vs) ⟶ ℙ]. vs-subspace(K;vs;w.Subspace(x.P[x]) w)


Proof




Definitions occuring in Statement :  generated-subspace: Subspace(v.P[v]) vs-subspace: vs-subspace(K;vs;x.P[x]) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] rng: Rng so_apply: x[s] implies:  Q generated-subspace: Subspace(v.P[v]) or: P ∨ Q prop: subtype_rel: A ⊆B uimplies: supposing a top: Top exists: x:A. B[x] true: True squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q vs-tree-val: vs-tree-val(vs;t) l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree_ind: l_tree_ind pi1: fst(t)
Lemmas referenced :  implies-vs-subspace generated-subspace_wf vs-point_wf vs-0_wf exists_wf l_tree_wf rng_car_wf equal_wf vs-tree-val_wf l_tree_covariant top_wf subtype_rel_product vector-space_wf rng_wf vs-mul_wf vs-add_wf vs-zero-add iff_weakening_equal vs-zero-mul squash_wf true_wf rng_sig_wf subtype_rel_self l_tree_node_wf rng_zero_wf vs-add-comm vs-mon_ident vs-mul-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination sqequalRule lambdaEquality applyEquality setElimination rename because_Cache hypothesis independent_functionElimination inlFormation productEquality functionExtensionality independent_isectElimination isect_memberEquality voidElimination voidEquality unionElimination productElimination functionEquality cumulativity universeEquality equalityUniverse levelHypothesis natural_numberEquality equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed instantiate inrFormation dependent_pairFormation hyp_replacement applyLambdaEquality

Latex:
\mforall{}K:Rng.  \mforall{}vs:VectorSpace(K).    \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].  vs-subspace(K;vs;w.Subspace(x.P[x])  w)



Date html generated: 2018_05_22-PM-09_42_17
Last ObjectModification: 2018_05_20-PM-10_42_59

Theory : linear!algebra


Home Index