Nuprl Lemma : l_tree_wf

[L,T:Type].  (l_tree(L;T) ∈ Type)


Proof




Definitions occuring in Statement :  l_tree: l_tree(L;T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_tree: l_tree(L;T) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  l_treeco_wf has-value_wf-partial nat_wf set-value-type le_wf int-value-type l_treeco_size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality

Latex:
\mforall{}[L,T:Type].    (l\_tree(L;T)  \mmember{}  Type)



Date html generated: 2018_05_22-PM-09_38_24
Last ObjectModification: 2015_12_28-PM-06_41_41

Theory : labeled!trees


Home Index