Nuprl Lemma : vs-zero-mul
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[k:|K|].  (k * 0 = 0 ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-mul: a * x, 
vs-0: 0, 
vector-space: VectorSpace(K), 
vs-point: Point(vs), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T, 
rng: Rng, 
rng_car: |r|
Definitions unfolded in proof : 
true: True, 
all: ∀x:A. B[x], 
rng: Rng, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
squash: ↓T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
vs-0_wf, 
vs-mul_wf, 
vs-point_wf, 
rng_wf, 
vector-space_wf, 
rng_car_wf, 
equal_wf, 
squash_wf, 
true_wf, 
vs-mul-linear, 
rng_sig_wf, 
vs-zero-add, 
iff_weakening_equal, 
vs-neg_wf, 
vs-add_wf, 
vs-add-neg, 
vs-add-assoc, 
vs-add-comm
Rules used in proof : 
natural_numberEquality, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[k:|K|].    (k  *  0  =  0)
Date html generated:
2018_05_22-PM-09_41_22
Last ObjectModification:
2018_01_09-PM-01_04_06
Theory : linear!algebra
Home
Index