Nuprl Lemma : vs-zero-mul

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[k:|K|].  (k 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-mul: x vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  true: True all: x:A. B[x] rng: Rng member: t ∈ T uall: [x:A]. B[x] squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  vs-0_wf vs-mul_wf vs-point_wf rng_wf vector-space_wf rng_car_wf equal_wf squash_wf true_wf vs-mul-linear rng_sig_wf vs-zero-add iff_weakening_equal vs-neg_wf vs-add_wf vs-add-neg vs-add-assoc vs-add-comm
Rules used in proof :  natural_numberEquality dependent_functionElimination because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination applyLambdaEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[k:|K|].    (k  *  0  =  0)



Date html generated: 2018_05_22-PM-09_41_22
Last ObjectModification: 2018_01_09-PM-01_04_06

Theory : linear!algebra


Home Index