Nuprl Lemma : vs-add-comm

K:RngSig. ∀vs:VectorSpace(K). ∀x,y:Point(vs).  (x x ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-add: y vector-space: VectorSpace(K) vs-point: Point(vs) all: x:A. B[x] equal: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  vs-add-comm-nu vs-point_wf vector-space_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination

Latex:
\mforall{}K:RngSig.  \mforall{}vs:VectorSpace(K).  \mforall{}x,y:Point(vs).    (x  +  y  =  y  +  x)



Date html generated: 2018_05_22-PM-09_40_26
Last ObjectModification: 2018_05_20-PM-10_41_30

Theory : linear!algebra


Home Index