Nuprl Lemma : vs-add-comm
∀K:RngSig. ∀vs:VectorSpace(K). ∀x,y:Point(vs).  (x + y = y + x ∈ Point(vs))
Proof
Definitions occuring in Statement : 
vs-add: x + y
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
rng_sig: RngSig
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
vs-add-comm-nu, 
vs-point_wf, 
vector-space_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination
Latex:
\mforall{}K:RngSig.  \mforall{}vs:VectorSpace(K).  \mforall{}x,y:Point(vs).    (x  +  y  =  y  +  x)
Date html generated:
2018_05_22-PM-09_40_26
Last ObjectModification:
2018_05_20-PM-10_41_30
Theory : linear!algebra
Home
Index