Nuprl Lemma : vs-add-neg

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  (x -(x) 0 ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-neg: -(x) vs-add: y vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  vs-neg: -(x) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng all: x:A. B[x] prop: squash: T member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vs-mul-add rng_one_wf rng_minus_wf vs-mul_wf iff_weakening_equal vs-mul-one equal_wf rng_sig_wf vector-space_wf vs-point_wf true_wf squash_wf vs-add_wf vs-mul-zero rng_car_wf rng_plus_inv
Rules used in proof :  axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality universeEquality because_Cache rename setElimination dependent_functionElimination equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    (x  +  -(x)  =  0)



Date html generated: 2018_05_22-PM-09_41_04
Last ObjectModification: 2018_01_09-PM-01_04_42

Theory : linear!algebra


Home Index