Nuprl Lemma : vs-neg_wf

[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  (-(x) ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-neg: -(x) vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] member: t ∈ T rng_sig: RngSig
Definitions unfolded in proof :  all: x:A. B[x] vs-neg: -(x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf vector-space_wf vs-point_wf rng_one_wf rng_minus_wf vs-mul_wf
Rules used in proof :  dependent_functionElimination because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    (-(x)  \mmember{}  Point(vs))



Date html generated: 2018_05_22-PM-09_41_01
Last ObjectModification: 2018_01_09-PM-01_04_48

Theory : linear!algebra


Home Index