Nuprl Lemma : vs-zero-add

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  (0 x ∈ Point(vs))


Proof




Definitions occuring in Statement :  vs-add: y vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] rng: Rng member: t ∈ T uall: [x:A]. B[x] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T
Lemmas referenced :  rng_wf vector-space_wf vs-point_wf vs-mul-one iff_weakening_equal vs-mul-zero vs-0_wf equal_wf rng_sig_wf true_wf squash_wf vs-add_wf rng_one_wf rng_zero_wf vs-mul-add vs-mul_wf rng_car_wf rng_plus_comm rng_plus_zero
Rules used in proof :  dependent_functionElimination because_Cache axiomEquality isect_memberEquality sqequalRule hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality universeEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    (0  +  x  =  x)



Date html generated: 2018_05_22-PM-09_40_53
Last ObjectModification: 2018_01_09-PM-01_04_56

Theory : linear!algebra


Home Index