Nuprl Lemma : vs-zero-add
∀[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)]. (0 + x = x ∈ Point(vs))
Proof
Definitions occuring in Statement :
vs-add: x + y
,
vs-0: 0
,
vector-space: VectorSpace(K)
,
vs-point: Point(vs)
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
,
rng: Rng
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
rng: Rng
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
true: True
,
prop: ℙ
,
squash: ↓T
Lemmas referenced :
rng_wf,
vector-space_wf,
vs-point_wf,
vs-mul-one,
iff_weakening_equal,
vs-mul-zero,
vs-0_wf,
equal_wf,
rng_sig_wf,
true_wf,
squash_wf,
vs-add_wf,
rng_one_wf,
rng_zero_wf,
vs-mul-add,
vs-mul_wf,
rng_car_wf,
rng_plus_comm,
rng_plus_zero
Rules used in proof :
dependent_functionElimination,
because_Cache,
axiomEquality,
isect_memberEquality,
sqequalRule,
hypothesisEquality,
rename,
setElimination,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
hypothesis,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
independent_functionElimination,
productElimination,
independent_isectElimination,
baseClosed,
imageMemberEquality,
natural_numberEquality,
universeEquality,
equalitySymmetry,
equalityTransitivity,
imageElimination,
lambdaEquality,
applyEquality
Latex:
\mforall{}[K:Rng]. \mforall{}[vs:VectorSpace(K)]. \mforall{}[x:Point(vs)]. (0 + x = x)
Date html generated:
2018_05_22-PM-09_40_53
Last ObjectModification:
2018_01_09-PM-01_04_56
Theory : linear!algebra
Home
Index