Nuprl Lemma : vs-mon_ident

[K:Rng]. ∀[vs:VectorSpace(K)]. ∀[x:Point(vs)].  ((x x ∈ Point(vs)) ∧ (0 x ∈ Point(vs)))


Proof




Definitions occuring in Statement :  vs-add: y vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T rng: Rng
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True rng: Rng squash: T cand: c∧ B and: P ∧ Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf vector-space_wf vs-zero-add iff_weakening_equal vs-0_wf vs-add-comm vs-point_wf equal_wf
Rules used in proof :  dependent_functionElimination isect_memberEquality axiomEquality independent_pairEquality independent_pairFormation independent_functionElimination productElimination independent_isectElimination equalitySymmetry equalityTransitivity baseClosed imageMemberEquality sqequalRule natural_numberEquality hypothesisEquality rename setElimination hypothesis because_Cache isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[K:Rng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[x:Point(vs)].    ((x  +  0  =  x)  \mwedge{}  (0  +  x  =  x))



Date html generated: 2018_05_22-PM-09_40_55
Last ObjectModification: 2018_01_09-AM-10_31_22

Theory : linear!algebra


Home Index