Nuprl Lemma : generated-subspace_wf
∀[K:RngSig]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  (Subspace(x.P[x]) ∈ Point(vs) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
generated-subspace: Subspace(v.P[v])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
generated-subspace: Subspace(v.P[v])
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
or_wf, 
equal_wf, 
vs-point_wf, 
vs-0_wf, 
exists_wf, 
l_tree_wf, 
rng_car_wf, 
vs-tree-val_wf, 
l_tree_covariant, 
top_wf, 
subtype_rel_product, 
vector-space_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
productEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[K:RngSig].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].    (Subspace(x.P[x])  \mmember{}  Point(vs)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2018_05_22-PM-09_42_12
Last ObjectModification:
2018_05_20-PM-10_42_03
Theory : linear!algebra
Home
Index